# **Approval Sheet** | Customer | | |----------------|---------------------------| | Product Number | M4R0-8GSSB5IK | | Module speed | PC4-2666 | | Pin | 288 pin | | CI-tRCD-tRP | 19-19-19 | | Operating Temp | -40℃~ +85℃ | | Date | 15 <sup>th</sup> May 2019 | # The Total Solution For Industrial Flash Storage ### 1. Features ### **Key Parameter** | Industry | Speed | Da | ita Rate MT/ | s | CL | tRCD | tRP | |--------------|-------|-------|--------------|-------|----|------|-----| | Nomenclature | Grade | CL=15 | CL=17 | CL=19 | GL | IKCD | IKP | | PC4-2666 | I | 2133 | 2400 | 2666 | 19 | 19 | 19 | - JEDEC Standard 288-pin Registered Dual In-Line Memory Module - Intend for PC4-2666 applications - Inputs and Outputs are SSTL-12 compatible - VDD=VDDQ= 1.2 Volt (1.14V~1.26V) - VPP=2.5 Volt (2.375V~2.75V) - VDDSPD=2.2-3.6V - Low-Power auto self-refresh (LPASR) - SDRAMs have 16 internal banks for concurrent operation (4 Bank Group of 4 banks each) - Normal and Dynamic On-Die Termination for data, strobe and mask signals. - Data bus inversion (DBI) for data bus - Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the MRS - Selectable BC4 or BL8 on-the fly (OTF) - Gold Plating Thickness 30µ" - · Fly-By topology - Terminated control, command and address bus - Programmable /CAS Latency: 10,11,12,13,14,15,16,17,18,19,20 - Operation temperature (-40 $^{\circ}$ C ~85 $^{\circ}$ C) - On-die VREFDQ generation and Calibration - Temperature Sensor with SPD EEPROM - Support ECC function - RoHS and Halogen free (Section 11) # 2. Ordering Information | DDR4 W/T RDIMM | | | | | | | |----------------|---------|----------|----------------------|----------------|-------------------|-----| | Part Number | Density | Speed | DIMM<br>Organization | Number of DRAM | Number<br>of rank | ECC | | M4R0-8GSSB5IK | 8GB | PC4-2666 | 1Gx72 | 18 | 2 | Y | # Pin Configurations (Front side/Back side) | Pin | Front | Pin | Back | |-----|----------------------|-----|--------|-----|-----------------------|-----|---------|-----|----------------------|-----|----------------|-----|----------------------|-----|--------| | 1 | NC | 145 | NC | 37 | VSS | 181 | DQ29 | 73 | VDD | 217 | VDD | 109 | VSS | 253 | DQ41 | | 2 | VSS | 146 | VREFCA | 38 | DQ24 | 182 | VSS | 74 | CK0_t | 218 | CK1_t | 110 | DQS14_t/<br>TDQS14_t | 254 | VSS | | 3 | DQ4 | 147 | VSS | 39 | VSS | 183 | DQ25 | 75 | CK0_c | 219 | CK1_c | 111 | DQS14_c/<br>TDQS14_c | 255 | DQS5_c | | 4 | VSS | 148 | DQ5 | 40 | DQS12_t/<br>TDQS12_t | 184 | VSS | 76 | VDD | 220 | VDD | 112 | VSS | 256 | DQS5_t | | 5 | DQ0 | 149 | VSS | 41 | DQS12_c/<br>TDQS12_c | 185 | DQS3_c | 77 | VTT | 221 | VTT | 113 | DQ46 | 257 | VSS | | 6 | VSS | 150 | DQ1 | 42 | VSS | 186 | DQS3_t | 78 | EVENT_n | 222 | PARITY | 114 | VSS | 258 | DQ47 | | 7 | DQS9_t/<br>TDQS9_t | 151 | VSS | 43 | DQ30 | 187 | VSS | 79 | A0 | 223 | VDD | 115 | DQ42 | 259 | VSS | | 8 | DQS09_c/<br>TDQS9_c | 152 | DQS0_c | 44 | VSS | 188 | DQ31 | 80 | VDD | 224 | BA1 | 116 | VSS | 260 | DQ43 | | 9 | vss | 153 | DQS0_t | 45 | DQ26 | 189 | VSS | 81 | BA0 | 225 | A10/AP | 117 | DQ52 | 261 | VSS | | 10 | DQ6 | 154 | VSS | 46 | vss | 190 | DQ27 | 82 | RAS_n<br>/A16 | 226 | VDD | 118 | vss | 262 | DQ53 | | 11 | vss | 155 | DQ7 | 47 | CB4 | 191 | VSS | 83 | VDD | 227 | RFU | 119 | DQ48 | 263 | VSS | | 12 | DQ2 | 156 | VSS | 48 | VSS | 192 | CB5 | 84 | CS0_n | 228 | WE_n/<br>A14 | 120 | VSS | 264 | DQ49 | | 13 | VSS | 157 | DQ3 | 49 | CB0 | 193 | VSS | 85 | VDD | 229 | VDD | 121 | DQS15_t/<br>TDQS15_t | 265 | VSS | | 14 | DQ12 | 158 | VSS | 50 | VSS | 194 | CB1 | 86 | CAS_n/<br>A15 | 230 | NC | 122 | DQS15_c/<br>TDQS15_c | 266 | DQS6_c | | 15 | VSS | 159 | DQ13 | 51 | TDQS17_t/<br>TDQS17_t | 195 | VSS | 87 | ODT0 | 231 | VDD | 123 | VSS | 267 | DQS6_t | | 16 | DQ8 | 160 | VSS | 52 | DQS17_c/<br>TDQS17_c | 196 | DQS8_c | 88 | VDD | 232 | A13 | 124 | DQ54 | 268 | VSS | | 17 | VSS | 161 | DQ9 | 53 | VSS | 197 | DQS8_t | 89 | CS1_n | 233 | VDD | 125 | VSS | 269 | DQ55 | | 18 | DQS10_t/<br>TDQS10_t | 162 | VSS | 54 | CB6 | 198 | VSS | 90 | VDD | 234 | A17 | 126 | DQ50 | 270 | VSS | | 19 | DQS10_c/<br>TDQS10_c | 163 | DQS1_c | 55 | VSS | 199 | CB7 | 91 | ODT1 | 235 | NC/C2 | 127 | VSS | 271 | DQ51 | | 20 | VSS | 164 | DQS1_t | 56 | CB2 | 200 | VSS | 92 | VDD | 236 | VDD | 128 | DQ60 | 272 | VSS | | 21 | DQ14 | 165 | VSS | 57 | VSS | 201 | CB3 | 93 | CS2_n/C0,NC | 237 | CS3_n<br>C1,NC | 129 | VSS | 273 | DQ61 | | 22 | VSS | 166 | DQ15 | 58 | RESET_n | 202 | VSS | 94 | VSS | 238 | SA2 | 130 | DQ56 | 274 | VSS | | 23 | DQ10 | 167 | VSS | 59 | VDD | 203 | CKE1 | 95 | DQ36 | 239 | VSS | 131 | VSS | 275 | DQ57 | | 24 | VSS | 168 | DQ11 | 60 | CKE0 | 204 | VDD | 96 | VSS | 240 | DQ37 | 132 | DQS16_t/<br>TDQS16_t | 276 | VSS | | 25 | DQ20 | 169 | VSS | 61 | VDD | 205 | RFU | 97 | DQ32 | 241 | VSS | 133 | DQS16_c<br>/TDQS16_c | 277 | DQS7_c | | 26 | VSS | 170 | DQ21 | 62 | ACT_n | 206 | VDD | 98 | VSS | 242 | DQ33 | 134 | VSS | 278 | DQS7_t | | 27 | DQ16 | 171 | VSS | 63 | BG0 | 207 | BG1 | 99 | DQS13_t/<br>TDQ13_t | 243 | VSS | 135 | DQ62 | 279 | VSS | | 28 | VSS | 172 | DQ17 | 64 | VDD | 208 | ALERT_n | 100 | DQS13_c/<br>TDQS13_c | 244 | DQS4_c | 136 | VSS | 280 | DQ63 | | 29 | DQS11_t/<br>TDQS11_t | 173 | VSS | 65 | A12/BC_n | 209 | VDD | 101 | VSS | 245 | DQS4_t | 137 | DQ58 | 281 | VSS | | 30 | DQS11_c/<br>TDQS11_c | 174 | DQS2_c | 66 | A9 | 210 | A11 | 102 | DQ38 | 246 | VSS | 138 | VSS | 282 | DQ59 | | 31 | VSS | 175 | DQS2_t | 67 | VDD | 211 | A7 | 103 | VSS | 247 | DQ39 | 139 | SA0 | 283 | VSS | | 32 | DQ22 | 176 | VSS | 68 | A8 | 212 | VDD | 104 | DQ34 | 248 | VSS | 140 | SA1 | 284 | VDDSPD | | 33 | VSS | 177 | DQ23 | 69 | A6 | 213 | A5 | 105 | VSS | 249 | DQ35 | 141 | SCL | 285 | SDA | | 34 | DQ18 | 178 | VSS | 70 | VDD | 214 | A4 | 106 | DQ44 | 250 | VSS | 142 | VPP | 286 | VPP | | 35 | VSS | 179 | DQ19 | 71 | A3 | 215 | VDD | 107 | VSS | 251 | DQ45 | 143 | VPP | 287 | VPP | | 36 | DQ28 | 180 | VSS | 72 | A1 | 216 | A2 | 108 | DQ40 | 252 | VSS | 144 | RFU | 288 | VPP | I. INC = IND CONNECT, KPU = KESSIVED TO FUTURE USE 2. Address A17 is only valid for 16 Gb x4 based SDRAMs. 3. RAS\_n is a multiplexed function with A16. 4. CAS\_n is a multiplexed function with A15. 5. WE\_n is a multiplexed function with A14. # 4. Architecture # Pin Definition | Pin Name | Description | Pin Name | Description | |------------------------------|------------------------------------------------------------------|---------------|----------------------------------------------------------------| | A0-A17 <sup>1</sup> | Register address input | SCL | I <sup>2</sup> C serial bus clock for SPD/TSE and register | | BAO, BA1 | Register bank select input | SDA | I <sup>2</sup> C serial bus data line for SPD/TSE and register | | BG0, BG1 | Register bank group select input | SA0-SA2 | I <sup>2</sup> C slave address select for SPD/TSE and registe | | RAS_n <sup>2</sup> | Register row address strobe input | PAR | Register parity input | | CAS_n <sup>3</sup> | Register column address strobe input | VDD | SDRAM core power supply | | WE_n <sup>4</sup> | Register write enable input | C0, C1,C2 | Chip ID lines for SDRAMs | | CS0_n, CS1_n<br>CS2_n, CS3_n | DIMM Rank Select Lines input | 12 V | Optional power Supply on socket but not used on RDIMM | | CKEO, CKE1 | Register clock enable lines input | VREFCA | SDRAM command/address reference supply | | ODT0, ODT1 | Register on-die termination control lines input | | Power supply return (ground) | | ACT_n | Register input for activate input | VDDSPD | Serial SPD-TSE positive power supply | | DQ0-DQ63 | DIMM memory data bus | | Register ALERT_n output | | CB0-CB7 | DIMM ECC check bits | VPP | SDRAM Supply | | TDQS0_t-TDQS17_t | Dummy loads formixed populations of x4 | , <del></del> | | | TDQS0_c-TDQS17_c | based and x8 based RDIMMs. | <u></u> ' | | | DQS0_t-DQS17_t | Data Buffer data strobes<br>(positive line of differential pair) | DM0_n-DM8_n | Data Mask | | DQS0_c-DQS17_c | Data Buffer data strobes<br>(negative line of differential pair) | RESET_n | Set Register and SDRAMs to a Known State | | DBIO_n-DBI8_n | Data Bus Inversion | EVENT_n | SPD signals a thermal event has occurred. | | CK0_t, CK1_t | Register clock input<br>(positive line of differential pair) | VTT | SDRAM I/O termination supply | | CK0_c, CK1_c | Register clocks input<br>(negative line of differential pair) | RFU | Reserved for future use | | <b>.</b> | 1 1115 45 61 41 1600 | | | Note 1 Address A17 is only valid for 16 Gb x4 based SDRAMs. Note 2 RAS\_n is a multiplexed function with A16. Note 3 CAS\_n is a multiplexed function with A15. Note 4 WE\_n is a multiplexed function with A14. Rev 1.0 # 5. Function Block Diagram: - (8GB, 2 Rank 512Mx8 DDR4 SDRAMs) Note: 1. The ZQ ball on each DDR4 component is connected to an external $240\Omega \pm 1\%$ resistor that is tied to ground. It is used for the calibration of the component's ODT and output driver. # 6. SDRAM Absolute Maximum Ratings | Symbol | Pa | arameter | Rating | Units | Note | |-----------------------------------|----------------------------|-------------------|--------------|-------|------| | _ | On a setting Tanana set us | Operating Temp. | -40 to 85 | °C | 1,2 | | T <sub>OPER</sub> | Operation Temperature | Extended Temp. | 85 to 95 | °C | 1,3 | | T <sub>STG</sub> | Storage Temperature | | -55 to 100 | °C | 4,5 | | V <sub>IN,</sub> V <sub>OUT</sub> | Voltage on any pins rela | tive to Vss | -0.3 to +1.5 | V | 4 | | V <sub>DD</sub> | Voltage on VDD supply | relative to Vss | -0.3 to +1.5 | V | 4,6 | | V <sub>DDQ</sub> | Voltage on VDDQ suppl | y relative to Vss | -0.3 to +1.5 | V | 4,6 | ### Note - 1) Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. - 2) The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between -40-85°C under all operating conditions. - 3) Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: - a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. - b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. - 4. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 5. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. - 6. VDD and VDDQ must be within 300 mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREF may be equal to or less than 300 mV Rev 1.0 # 7. Operating Condition | Symbol | Parameter | Min | Nom | Мах | Units | Notes | |------------|-------------------------------------------------|------------|-----------|------------|-------|-------| | VDD | Supply Voltage | 1.14 | 1.2 | 1.26 | V | 1 | | VPP | DRAM activating power supply | 2.375 | 2.5 | 2.75 | V | 2 | | VREFCA(DC) | Input reference voltage command/<br>address bus | 0.49 x VDD | 0.5 x VDD | 0.51 x VDD | V | 3 | | Vтт | Termination Voltage | 0.49 × VDD | 0.5 × VDD | 0.51 × VDD | V | 4 | ### Note: - 1. VDDQ tracks with VDD; VDDQ and VDD are tied together. - VPP must be greater than or equal to VDD at all times. - 3. VREFCA must not be greater than 0.6 x VDD. When VDD is less than 500mV, VREF may be less than or equal to 300mV. - 4. VTT termination voltages in excess of the specification limit adversely affect the voltage margins of command and address signals and reduce timing margins. # 8. Operating, Standby, and Refresh Currents - 8GB RDIMM (2 Rank 512Mx8 DDR4 SDRAMs) | Comple of | Dranged Conditions | Va | lue | l luite | |-----------|----------------------------------------------------------------------------------------------|----------|------------|---------| | Symbol | Proposed Conditions | IDD Max. | IPP Max. | Units | | | Operating One Bank Active-Precharge Current (AL=0)CKE: High; External clock: On; tCK, | | | | | | nRC, nRAS, CL: Refer to Component Datasheet for detail pattern; BL: 81; AL: 0; CS_n: | | | | | | Highbetween ACT and PRE; Command, Address, Bank Group Address, Bank Address | | | | | IDD0 | Inputs: partially toggling; Data IO: VDDQ; DM_n:stable at 1; Bank Activity: Cycling with one | 612 | 54 | mA | | | bank active at a time: 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode | | | | | | Registers2;ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for | | | | | | detail pattern | | | | | IDDOA | Operating One Bank Active-Precharge Current (AL=CL-1) | 0.40 | <b>5</b> 4 | 0 | | IDD0A | AL = CL-1, Other conditions: see IDD0 | 648 | 54 | mA | | | Operating One Bank Active-Read-Precharge Current (AL=0)CKE: High; | | | | | | External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component | | 54 | | | | Datasheet for detail pattern; BL: 81; AL: 0; CS_n: Highbetween ACT, RD and | | | | | 1004 | PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data | 700 | | | | IDD1 | IO: partially toggling; DM_n: stableat 1; Bank Activity: Cycling with one bank | 702 | | mA | | | active at a time: 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode | | | | | | Registers2; ODT Signal: stable at 0; Pattern Details: Refer to Component | | | | | | Datasheet for detail pattern | | | | | IDDAA | Operating One Bank Active-Read-Precharge Current (AL=CL-1) | 700 | <b>5</b> 4 | | | IDD1A | AL = CL-1, Other conditions: see IDD1 | 738 | 54 | mA | | | Precharge Standby Current (AL=0)CKE: High; External clock: On; tCK, CL: | | | | | | Refer to Component Datasheet for detail pattern; BL: 81; AL: 0; CS_n: stable at | | | | | IDDON | 1; Command,Address, Bank Group Address, Bank Address Inputs: partially | 004 | 00 | 4 | | IDD2N | toggling; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banksclosed; | 324 | 36 | mA | | | Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; | | | | | | Pattern Details: Refer to Component Datasheet for detail pattern | | | | | IDDS: | Precharge Standby Current (AL=CL-1) | 0.10 | 0.0 | | | IDD2NA | AL = CL-1, Other conditions: see IDD2N | 342 | 36 | mA | | | Precharge Standby ODT Current | | | | |-----------|------------------------------------------------------------------------------|-----|-----|----| | | CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for | | | | | | detail pattern; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank | | | | | IDD2NT | Group Address, Bank Address Inputs: partially toggling; Data IO: VSSQ; | 378 | 36 | mA | | | DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: | | | | | | Enabled in Mode Registers2; ODT Signal: toggling according; Pattern Details: | | | | | | Refer to Component Datasheet for detail pattern | | | | | IDD2NL | Precharge Standby Current with CAL enabled | 270 | 36 | mA | | IDDZNL | Same definition like for IDD2N, CAL enabled3 | 270 | 30 | MA | | IDDONO | Precharge Standby Current with Gear Down mode enabled | 200 | 20 | A | | IDD2NG | Same definition like for IDD2N, Gear Down mode enabled3 | 360 | 36 | mA | | ID DOLLD | Precharge Standby Current with DLL disabled | 004 | 0.0 | | | IDD2ND | Same definition like for IDD2N, DLL disabled3 | 324 | 36 | mA | | IDDa. | Precharge Standby Current with CA parity enabled | 000 | 0.0 | | | IDD2N_par | Same definition like for IDD2N, CA parity enabled3 | 360 | 36 | mA | | | Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer | | | | | | to Component Datasheet for detail pattern; BL: 81; AL:0; CS_n: stable at 1; | | 54 | ļ | | | Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; | 216 | | | | IDD2P | Data IO: VDDQ; DM_n: stable at 1; | | | mA | | | Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode | | | | | | Registers2; ODT Signal: stable at 0 | | | | | | Precharge Quiet Standby Current | | | | | | CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for | | | | | | detail pattern; BL: 81; AL: 0; CS_n: stable at 1; Command, | | | _ | | IDD2Q | Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: | 306 | 54 | mA | | | VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; | | | | | | Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0 | | | | | | Active Standby Current | | | | | | CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for | | | | | | detail pattern; BL: 81; AL: 0; CS_n: stable at 1; Command, | | | | | | Address, Bank Group Address, Bank Address Inputs: partially toggling; Data | | | | | IDD3N | IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks | 504 | 36 | mA | | | open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable | | | | | | at 0; Pattern Details:Refer to Component Datasheet | | | | | | for detail pattern | | | | | | | | | | | IDD3NA | Active Standby Current (AL=CL-1) | 522 | 36 | mA | |---------|--------------------------------------------------------------------------------|------|-----|--------| | | AL = CL-1, Other conditions: see IDD3N | | | | | | Active Power-Down Current | | | | | | CKE: Low; External clock: On; tCK, CL: sRefer to Component Datasheet for | | | | | IDD3P | detail pattern; BL: 81; AL: 0; CS_n: stable at 1; Command, | 324 | 36 | mA | | 15501 | Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: | 021 | 00 | 1117 ( | | | VDDQ; DM_n: stable at 1; Bank Activity: all banks open; | | | | | | Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0 | | | | | | Operating Burst Read Current | | | | | | CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for | | | | | | detail pattern; BL: 82; AL: 0; CS_n: High between RD; | | | | | | Command, Address, Bank Group Address, Bank Address Inputs: partially | | | | | | toggling; Data IO: seamless read data burst with different | | | | | IDD4R | data between one burst and the next one according; DM_n: stable at 1; Bank | 1692 | 54 | mA | | | Activity: all banks open, RD commands cycling through | | | | | | banks: 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode Registers2; | | | | | | ODT Signal: stable at 0; Pattern Details: Refer to | | | | | | Component Datasheet for detail pattern | | | | | | Operating Burst Read Current (AL=CL-1) | | | | | IDD4RA | AL = CL-1, Other conditions: see IDD4R | 1800 | 54 | mA | | 100 (00 | Operating Burst Read Current with Read DBI | 4704 | - 4 | ٠ | | IDD4RB | Read DBI enabled3, Other conditions: see IDD4R | 1764 | 54 | mA | | | Operating Burst Write Current | | | | | | CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for | | | | | | detail pattern; BL: 81; AL: 0; CS_n: High between WR; | | | | | | Command, Address, Bank Group Address, Bank Address Inputs: partially | | | | | | toggling ; Data IO: seamless write data burst with different | | | | | IDD4W | data between one burst and the next one; DM_n: stable at 1; Bank Activity: all | 1584 | 36 | mA | | | banks open, WR commands cycling through banks: | | | | | | 0,0,1,1,2,2,; Output Buffer and RTT: Enabled in Mode Registers2; ODT | | | | | | Signal: stable at HIGH; Pattern Details: Refer to Component | | | | | | Datasheet for detail pattern | | | | | | Operating Burst Write Current (AL=CL-1) | | _ | _ | | IDD4WA | AL = CL-1, Other conditions: see IDD4W | 1692 | 36 | mA | | | Operating Burst Write Current with Write DBI | | | | | IDD4WB | Write DBI enabled3, Other conditions: see IDD4W | 1584 | 36 | mA | | | | | | | | T | | | | | |-----------|-------------------------------------------------------------------------------|------|-----|--------| | IDD4WC | Operating Burst Write Current with Write CRC | 1440 | 36 | mA | | | Write CRC enabled3, Other conditions: see IDD4W | | | | | IDD4W_par | Operating Burst Write Current with CA Parity | 1836 | 36 | mA | | 122pa. | CA Parity enabled3, Other conditions: see IDD4W | 1000 | 00 | | | | Burst Refresh Current (1X REF) | | | | | | CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet | | | | | | for detail pattern; BL: 81; AL: 0; CS_n: High between | | | | | IDD5B | REF; Command, Address, Bank Group Address, Bank Address Inputs: partially | 3546 | 378 | mA | | 10000 | toggling ; Data IO: VDDQ; DM_n: stable at 1; Bank | 0040 | 0/0 | 1117 ( | | | Activity: REF command every nRFC ; Output Buffer and RTT: Enabled in Mode | | | | | | Registers2; ODT Signal: stable at 0; Pattern Details: | | | | | | Refer to Component Datasheet for detail pattern | | | | | | Burst Refresh Current (2X REF) | | | | | IDD5F2 | tRFC=tRFC_x2, Other conditions: see IDD5B | 2808 | 306 | mA | | | | | | | | IDD5F4 | Burst Refresh Current (4X REF) | 2250 | 234 | mA | | 100014 | tRFC=tRFC_x4, Other conditions: see IDD5B | 2200 | 204 | 1117 ( | | | Self Refresh Current: Normal Temperature Range | | | | | | TCASE: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: | | | | | | Low; External clock: Off; CK_t and CK_c#: LOW; CL: Refer | | 72 | | | IDD6N | to Component Datasheet for detail pattern; BL: 81; AL: 0; CS_n#, Command, | 234 | | mA | | | Address, Bank Group Address, Bank Address, Data IO: | | | | | | High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output Buffer | | | | | | and RTT: Enabled in Mode Registers2; ODT Signal: MIDLEVEL | | | | | | Self-Refresh Current: Extended Temperature Range) | | | | | | TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: | | | | | | Low; External clock: Off; CK_t and CK_c: LOW; CL: | | | | | IDDec | Refer to Component Datasheet for detail pattern; BL: 81; AL: 0; CS_n, | 260 | 70 | m A | | IDD6E | Command, Address, Bank Group Address, Bank Address, Data | 360 | 72 | mA | | | IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh | | | | | | operation; Output Buffer and RTT: Enabled in Mode | | | | | | Registers2; ODT Signal: MID-LEVEL | | | | | IDD6R | Self-Refresh Current: Reduced Temperature Range TCASE: 0 - TBD (~35-45)°C; Low Power Array Self Refresh (LP ASR): Reduced4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: Refer to Component Datasheet for detail pattern; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL | 180 | 72 | mA | |-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----| | IDD6A | Auto Self-Refresh Current TCASE: 0 - 95°C; Low Power Array Self Refresh (LP ASR): Auto4; Partial Array Self-Refresh (PASR): Full Array; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: Refer to Component Datasheet for detail pattern; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: MID-LEVEL | 360 | 72 | mA | | IDD7 | Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern; BL: 81; AL: CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling; DataIO: read data bursts with different data between one burst and the next one; DM_n: stable at 1; Bank Activity: two times interleaved cycling through banks (0, 1,7) with different addressing; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern | 2664 | 198 | mA | | IDD8 | Maximum Power Down Current TBD | 108 | 36 | mA | 9. Timing Parameters | Clock Timing | | | | | |-----------------------------------------------------------|-----------------|-------------------------------------------|-------------------------------------------|----------| | Parameter | Symbol | MIN | MAX | Units | | Minimum Clock Cycle Time (DLL off mode) | tCK (DLL_OFF) | 8 | 20 | ns | | Average Clock Period | tCK(avg) | 0.750 | <0.833 | ns | | Average high pulse width | tCH(avg) | 0.48 | 0.52 | tCK(avg) | | Average low pulse width | tCL(avg) | 0.48 | 0.52 | tCK(avg) | | Absolute Clock Period | tCK(abs) | tCK(avg)min<br>+<br>tJIT(per)min_<br>to t | tCK(avg)m<br>ax +<br>tJIT(per)m<br>ax_tot | tCK(avg) | | Absolute clock HIGH pulse<br>width | tCH(abs) | 0.45 | - | tCK(avg) | | Absolute clock LOW pulse<br>width | tCL(abs) | 0.45 | - | tCK(avg) | | Clock Period Jitter- total | JIT(per)_tot | -38 | 38 | ps | | Clock Period Jitter-<br>deterministic | JIT(per)_dj | -19 | 19 | ps | | Clock Period Jitter during DLL<br>lock-ing period | tJIT(per, lck) | -30 | 30 | ps | | Cycle to Cycle Period Jitter | tJIT(cc)_to-tal | 7 | 5 | ps | | Cycle to Cycle Period Jitter<br>deter-ministic | tJIT(cc)_dj | 3 | 8 | ps | | Cycle to Cycle Period Jitter<br>during DLL locking period | tJIT(cc, lck) | 6 | 0 | ps | | Duty Cycle Jitter | tJIT(duty) | TBD | TBD | ps | | Cumulative error across 2 cycles | tERR(2per) | -55 | 55 | ps | | Cumulative error across 3 cycles | tERR(3per) | -66 | 66 | ps | | Cumulative error across 4 cycles | tERR(4per) | -73 | 73 | ps | | Cumulative error across 5 cycles | tERR(5per) | -78 | 78 | ps | | Cumulative error across 6 | tERR(6per) | -83 | 83 | ps | | cycles | | | | | |-------------------------------------------------------------------------------------|-------------|-----------------------------|--------------------------------------------------------------|----| | Cumulative error across 7 | | | | | | cycles | tERR(7per) | -87 | 87 | ps | | Cumulative error across 8 cycles | tERR(8per) | -91 | 91 | ps | | Cumulative error across 9 cycles | tERR(9per) | -94 | 94 | ps | | Cumulative error across 10 cycles | tERR(10per) | -96 | 96 | ps | | Cumulative error across 11 cycles | tERR(11per) | -99 | 99 | ps | | Cumulative error across 12 cycles | tERR(12per) | -101 | 101 | ps | | Cumulative error across 13 cycles | tERR(13per) | -103 | 103 | ps | | Cumulative error across 14 cycles | tERR(14per) | -104 | 104 | ps | | Cumulative error across 15 cycles | tERR(15per) | -106 | 106 | ps | | Cumulative error across 16 cycles | tERR(16per) | -108 | 108 | ps | | Cumulative error across 17 cycles | tERR(17per) | -110 | 110 | ps | | Cumulative error across 18 cycles | tERR(18per) | -112 | 112 | ps | | Cumulative error across n = 13, 14 49, 50 cycles | tERR(nper) | tJIT(per)_<br>tERR(nper)max | ((1 + 0.68ln(n)) * total min) = ((1 + 0.68ln(n)) _total max) | ps | | Command and Address setup time to CK_t, CK_c referenced to Vih(ac) / Vil(ac) levels | tIS(base) | TBD | - | ps | | Command and Address setup time to CK_t, CK_c referenced to Vref levels | tIS(Vref) | TBD | - | ps | | Command and Address hold time to CK_t, CK_c referenced | tIH(base) | TBD | - | ps | | | | Ī | | | |--------------------------------|---------------|---------------|-----|-------| | to Vih(dc) / Vil(dc) levels | | | | | | Command and Address hold | | | | | | time to CK_t, CK_c referenced | tIH(Vref) | TBD | - | ps | | to Vref levels | | | | | | Control and Address Input | ALDVA/ | 205 | | | | pulse width for each input | tIPW | 385 | - | ps | | Command and Address Timing | | | | | | Parameter | Symbol | MIN | MAX | Units | | CAS_n to CAS_n command | | max(5 nCK, | | | | delay for same bank group | tCCD_L | 5 ns) | - | nCK | | CAS_n to CAS_n command | | | | | | delay for different bank group | tCCD_S | 4 | - | nCK | | ACTIVATE to ACTIVATE | | | | | | Command delay to different | tRRD_S(2K) | Max(4nCK,5. | - | nCK | | bank group for 2KB page size | | 3ns) | | | | ACTIVATE to ACTIVATE | | | | | | Command delay to different | tRRD_S(1K) | Max(4nCK,3ns) | - | nCK | | bank group for 2KB page size | | | | | | ACTIVATE to ACTIVATE | | | | | | Command delay to different | | | | | | bank group for 1/ 2KB page | tRRD_S(1/ 2K) | Max(4nCK,3ns) | - | nCK | | size | | | | | | ACTIVATE to ACTIVATE | | | | | | Command delay to same bank | tRRD_L(2K) | Max(4nCK,6. | - | nCK | | group for 2KB page size | | 4ns) | | | | ACTIVATE to ACTIVATE | | / | | | | Command delay to same bank | tRRD_L(1K) | Max(4nCK,4. | - | nCK | | group for 1KB page size | | 9ns) | | | | ACTIVATE to ACTIVATE | | | | | | Command delay to same bank | tRRD_L(1/ 2K) | Max(4nCK,4. | - | nCK | | group for 1/2KB page size | | 9ns) | | | | Four activate window for 2KB | ,_,, | Max(28nCK,3 | | | | page size | tFAW_2K | Ons) | - | ns | | Four activate window for 1KB | ,_,,, | Max(20nCK,2 | | | | page size | tFAW_1K | 1ns) | - | ns | | Four activate window for | | Max(16nCK,1 | | | | 1/2KB page size | tFAW_1/2K | 2ns) | - | ns | | Delay from start of internal | | | | | |---------------------------------|-----------------|-------------------|-------------------|-----| | write transaction to internal | AMTD C | max(2nCK,2. | | | | read com-mand for different | tWTR_S | 5ns) | - | | | bank group | | | | | | Delay from start of internal | | | | | | write transaction to internal | +\A/TD_I | max(4nCK,7. | | | | read com-mand for same | tWTR_L | 5ns) | - | | | bank group | | | | | | Internal READ Command to | <b>ADTO</b> | max(4nCK,7. | | | | PRE-CHARGE Command delay | tRTP | 5ns) | - | | | WRITE recovery time | tWR | 15 | - | ns | | Maita anno ann tinn a mhan | | tWR+max | | | | Write recovery time when | tWR_CRC _DM | (5nCK,3.75ns | - | ns | | CRC and DM are enabled | | ) | | | | delay from start of internal | | tWTR_S+ma | | | | write transaction to internal | | X X | | | | read com-mand for different | tWTR_S_C RC_DM | ,<br>(5nCK,3.75ns | - | ns | | bank group with both CRC and | | (31100,3.73113 | | | | DM enabled | | , | | | | delay from start of internal | | | | | | write transaction to internal | | tWTR_L+max | | | | read com-mand for same | tWTR_L_C RC_DM | (5nCK,3.75ns | - | ns | | bank group with both CRC and | | ) | | | | DM enabled | | | | | | DLL locking time | tDLLK | 854 | - | nCK | | Mode Register Set command | tMRD | 8 | _ | nCK | | cycle time | tivino | Ü | | nek | | Mode Register Set command | tMOD | max(24nCK,1 | - | | | up-date delay | inos | 5ns) | | | | Multi-Purpose Register | tMPRR | 1 | - | nCK | | Recovery Time | Cirii IVI | - | | | | Multi Purpose Register Write | tWR_MPR | tMOD (min) | _ | _ | | Re-covery Time | <u>.</u> | + AL + PL | | | | Auto precharge write recovery | tDAL(min) | Programmed WF | R + roundup ( tRP | nCK | | + precharge time | | / tCK | (avg)) | | | DQ0 or DQL0 driven to 0 | tPDA_S | 0.5 | - | UI | | set-up time to first DQS rising | - 1 <del></del> | - 1.0 | | 2.5 | | edge | | | | | |--------------------------------------------|-----------|------|------|----------| | DQ0 or DQL0 driven to 0 hold | | | | | | time from last DQS fall-ing | tPDA_H | 0.5 | - | UI | | edge | | | | | | CS_n to Command Address Late | ncy | | | | | CS_n to Command Address | +CA1 | F | | CV | | Laten-cy | tCAL | 5 | - | nCK | | DRAM Data Timing | | | | | | DQS_t,DQS_c to DQ skew, per | tDQSQ | | 0.18 | tCK(avg) | | group, per access | ισασα | - | 0.16 | /2 | | DQ output hold time from | tQH | 0.74 | | tCK(avg) | | DQS_t,DQS_c | ίζιι | 0.74 | - | /2 | | Data Valid Window per | | | | | | device: tQH - tDQSQ for a | tDVWd | TBD | - | UI | | device | | | | | | Data Valid Window per | | | | | | device, per pin: tQH - tDQSQ | tDVWp | 0.72 | - | UI | | each device's out-put | | | | | | DQ low impedance time from | tLZ(DQ) | -310 | 170 | Ps | | CK_t, CK_c | , , | | | | | DQ high impedance time from | tHZ(DQ) | - | 170 | ps | | CK_t, CK_c | . , | | | · | | Data Strobe Timing | | | | | | DQS_t, DQS_c differential | tRPRE | 0.9 | | tCK | | READ Preamble | | | | | | DQS_t, DQS_c differential | tRPST | 0.33 | TBD | tCK | | READ Postamble | | | | | | DQS_t,DQS_c differential | tQSH | 0.4 | - | tCK | | output high time | | | | | | DQS_t,DQS_c differential | tQSL | 0.4 | - | tCK | | output low time | | | | | | DQS_t, DQS_c differential | tWPRE | 0.9 | - | tCK | | WRITE Preamble | | | | | | DQS_t, DQS_c differential WRITE Postamble | tWPST | 0.33 | TBD | tCK | | DQS_t and DQS_c | +1.7/DOC/ | 210 | 170 | 20 | | low-impedance time | tLZ(DQS) | -310 | 170 | ps | | (Referenced from RL-1) | | | | | |---------------------------------|------------------|-------------|----------|-----| | DQS_t and DQS_c | | | | | | high-impedance time | tHZ(DQS) | - | 170 | ps | | (Referenced from RL+BL/2) | | | | | | DQS_t, DQS_c differential | +D001 | 0.46 | 0.54 | +CV | | input low pulse width | tDQSL | 0.46 | 0.54 | tCK | | DQS_t, DQS_c differential | *DOCI1 | 0.46 | 0.54 | +CV | | input high pulse width | tDQSH | 0.46 | 0.54 | tCK | | DQS_t, DQS_c rising edge to | | | | | | CK_t, CK_c rising edge (1 clock | tDQSS | -0.27 | 0.27 | tCK | | preamble) | | | | | | DQS_t, DQS_c falling edge | | | | | | setup time to CK_t, CK_c | tDSS | 0.18 | - | tCK | | rising edge | | | | | | DQS_t, DQS_c falling edge | | | | | | hold time from CK_t, CK_c | tDSH | 0.18 | - | tCK | | rising edge | | | | | | DQS_t, DQS_c rising edge | | | | | | output timing locatino from | tDQSCK (DLL On) | -170 | 170 | ps | | rising | | | | | | DQS_t, DQS_c rising edge | | | | | | output variance window per | tDQSCKI (DLL On) | | 270 | ps | | DRAM | | | | | | MPSM Timing | | | | | | Command path disable delay | 4M 4D E D | tMOD(min) + | | | | upon MPSM entry | tMPED | tCPDED(min) | - | | | Valid clock requirement after | +CVA 4DE | tMOD(min) + | | | | MPSM entry | tCKMPE | tCPDED(min) | - | | | Valid clock requirement | +0//4/0// | +CVCDV/!\ | | | | before MPSM exit | tCKMPX | tCKSRX(min) | | | | Exit MPSM to commands not | +V140 | tuolinein) | | | | requiring a locked DLL | tXMP | txs(imin) | | | | Exit MPSM to commands | +VMADDL1 | tXMP(min) + | | | | requiring a locked DLL | tXMPDLL | tXSDLL(min) | | | | CC cotup time to CVF | +NADV C | tISmin + | | | | CS setup time to CKE | tMPX_S | tlHmin | <u>-</u> | | | Calibration Timing | | | | | | | | | | | | Power-up and RESET calibration time | tZQinit | 1024 | - | nCK | |----------------------------------------------------------------------------------------------------|------------------|--------------------------------------|---|-----| | Normal operation Full calibration time | tZQoper | 512 | - | nCK | | Normal operation Short calibration time | tZQCS | 128 | - | nCK | | Reset/Self Refresh Timing | | | | | | Exit Reset from CKE HIGH to a valid command | command tXPR | max<br>(5nCK,tRFC(<br>min)+<br>10ns) | - | | | Exit Self Refresh to commands | | tRFC(min)+1 | | | | not requiring a locked DLL | tXS | Ons | - | | | SRX to commands not requiring a locked DLL in Self Refresh ABORT | tX-S_ABORT( min) | tRFC4(min)+ | - | | | Exit Self Refresh to ZQCL,ZQCS<br>and MRS (CL,CWL,WR,RTP and<br>Gear Down) | tXS_FAST (min) | tRFC4(min)+<br>10ns | - | | | Exit Self Refresh to commands re-quiring a locked DLL | tXSDLL | tDLLK(min) | - | | | Minimum CKE low width for<br>Self re-fresh entry to exit<br>timing | tCKESR | tCKE(min)+1<br>nCK | - | | | Minimum CKE low width for<br>Self re-fresh entry to exit<br>timing with CA Parity enabled | tCKESR_ PAR | tCKE(min)+<br>1nCK+PL | - | | | Valid Clock Requirement after<br>Self Refresh Entry (SRE) or<br>Power- Down Entry (PDE) | tCKSRE | max(5nCK,10 | - | | | Valid Clock Requirement after Self Refresh Entry (SRE) or Power- Down when CA Parity is enabled | tCKS-RE_PAR | max<br>(5nCK,10ns)<br>+PL | - | | | Valid Clock Requirement<br>before Self Refresh Exit (SRX)<br>or Power-Down Exit (PDX) or | tCKSRX | max(5nCK,10 | - | | | Reset Exit Power Down With DLL on to any valid command; Exit Power Down with DLL on to any valid command; Exit Power Down with DLL frozen to commands not requiring a locked DLL CKE minimum pulse width (Minimum) STREFI Timing of ACT command to power Down entry CKE (Minimum) CKE TENER CKE (Minimum) STREFI TIMING of ROJADA command to twRAPDEN CKE (Minimum) CKE TENER CKE (Minimum) CKE TENER CKE (Minimum) STREFI | 2 | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|---------|-----| | Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL CKE minimum pulse width CKE | Reset Exit | | | | | | to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL CKE minimum pulse width | | | | | | | Precharge Power Down with DLL frozen to commands not requiring a locked DLL CKE minimum pulse width CKE minimum pulse width tCKE Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of WR (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry Timing of WR Scommand Sco | | | | | | | DLL frozen to commands not requiring a locked DLL CKE minimum pulse width CKE minimum pulse width tCKE max (3nCK, 5ns) Command pass disable delay tCPDED 4 - nCK Power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry Timing of MR Scommand to Power Down entry Timing of REF command to Power Down entry Timing of MR Scommand to Timing of MR Scommand to Power Down entry Timing of MR Scommand to Timing of MR Scommand to Timing of MR Scommand to Power Down entry Timing of MR Scommand to | to any valid command;Exit | | | | | | requiring a locked DLL CKE minimum pulse width tCKE max (3nCK, 5ns) Command pass disable delay tCPDED 4 - nCK Power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry triming of RD/RDA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of MRS command to Power Down entry Timing of MRS command to TMRS pDEN pDE | Precharge Power Down with | tXP | (4nCK,6ns) | - | | | CKE minimum pulse width tCKE Sns) Command pass disable delay tCPDED 4 - nCK Power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry tWRPDEN Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of MRS command to Power Down entry Dow | DLL frozen to commands not | | | | | | CKE minimum pulse width COmmand pass disable delay Toming power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of RF command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of REF command to Power Down entry Timing of REF command to Power Down entry Timing of MRS | requiring a locked DLL | | | | | | Command pass disable delay Power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of MRS command to Power Down entry (BC4MRS) Timing of MRS command to Power Down entry | CKF minimum pulse width | †CKF | max (3nCK, | _ | | | Power Down Entry to Exit Timing Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS | ONE THIRM PAISE THEM. | | 5ns) | | | | Timing the tacted in tacte | Command pass disable delay | tCPDED | 4 | - | nCK | | Timing of ACT command to Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of RFF command to Power Down entry (BC4MRS) Timing of MRA command to Power Down entry (BC4MRS) Timing of MRA command to Power Down entry Timing of MRA command to Power Down entry Timing of MRS | Power Down Entry to Exit | +00 | +CKE(min) | O*+DEE1 | | | Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry BC4MRS) Timing of REF command to Power Down entry BC4MRS) Timing of REF command to Power Down entry BC4MRS) Timing of REF command to Power Down entry BC4MRS) Timing of MRS command to Power Down entry | Timing | (PD | (CKE(IIIIII) | 9 (NEF) | | | Power Down entry Timing of PRE or PREA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MTS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MTS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MTS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of REF command to Power Down entry Timing of MRS | Timing of ACT command to | *ACTRDEN | 2 | | CV | | Timing of RD/RDA command to Power Down entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of MRA command to Power Down entry (BC4MRS) Timing of MRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of REF command to Power Down entry Timing of MRS Timi | Power Down entry | TACTPDEN | 2 | - | nck | | entry Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of WR command to Power Down entry (BC4MRS) Timing of MR command to Power Down entry (BC4MRS) Timing of MRS command to Power Down entry | Timing of PRE or PREA | | | | | | Timing of RD/RDA command to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of MRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS | command to Power Down | tPRPDEN | 2 | - | nCK | | trade to Power Down entry Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS command to Power Down entry Timing of MRS command to Power Down entry Timing of MRS command to Power Down entry Mode Register Set command TMRD_PDA TMRD_PDA | entry | | | | | | Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of REF command to Power Down entry Timing of MRS M | Timing of RD/RDA command | | | | | | Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS Mode Register Set command | to Power Down entry | tRDPDEN | RL+4+1 | - | nCK | | Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS o | Timing of WR command to | | | | | | BL8MRS, BC4OTF) Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS command to Power Down entry Mode Register Set command TMRD_PDA TMRD_PDA TMRD_PDA | Power Down entry (BL8OTF, | tWRPDEN | | - | nCK | | Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of REF command to Power Down entry Timing of MRS o | BL8MRS, BC4OTF) | | tCK(avg)) | | | | Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS o | Timing of WRA command to | | | | | | Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS | Power Down entry (BL8OTF, | tWRAPDEN | WL+4+WR+1 | - | nCK | | Timing of WRA command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS | BL8MRS, BC4OTF) | | | | | | Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS Timing the MRSPDEN Ti | Timing of WR command to | | WL+2+(tWR/ | | | | Timing of REF command to Power Down entry Timing of MRS command to Power Down entry Timing of MRS command to Power Down entry Timing of MRS command to Power Down entry ### Market Down | Power Down entry (BC4MRS) | tWRP-BC4DEN | tCK(avg)) | - | nCK | | Power Down entry (BC4MRS) Timing of REF command to Power Down entry Timing of MRS command to Power Down entry Towns of MRS command to Power Down entry PDA Timing Mode Register Set command tMRD_PDA max(16nCK,1) | Timing of WRA command to | | | | | | Timing of MRS command to Power Down entry Towns of MRS command to Power Down entry PDA Timing Mode Register Set command tMRD_PDA tREFPDEN tMOD(min) - max(16nCK,1) | Power Down entry (BC4MRS) | tWRAP-BC4DEN | WL+2+WR+1 | - | nCK | | Power Down entry Timing of MRS command to Power Down entry **MRSPDEN** tMOD(min) - **PDA Timing** Mode Register Set command tMRD_PDA** **MRSPDEN** tMOD(min) - **PDA Timing** **Max(16nCK,1)** | Timing of REF command to | | | | | | Power Down entry PDA Timing Mode Register Set command tMRD_PDA tMOD(min) max(16nCK,1 | Power Down entry | tREFPDEN | 2 | - | nCK | | Power Down entry PDA Timing Mode Register Set command tMRD_PDA max(16nCK,1 | Timing of MRS command to | | | | | | Mode Register Set command max(16nCK,1 tMRD_PDA | Power Down entry | tMRSPDEN | tMOD(min) | - | | | tMRD_PDA | PDA Timing | | | | | | cycle time in PDA mode tMRD_PDA Ons) | Mode Register Set command | | max(16nCK,1 | | | | | | tMRD_PDA | | | | | Mode Register Set command tMOD_PDA tMOD | Mode Register Set command | tMOD_PDA | tM | OD | | | up-date delay in PDA mode | | | | | |-------------------------------|-----------------|------|--------|----------| | ODT Timing | | | | | | Asynchronous RTT turn-on | | | | | | delay (Power-Down with DLL | tAONAS | 1.0 | 9.0 | ns | | frozen) | | | | | | Asynchronous RTT turn-off | | | | | | delay (Power-Down with DLL | tAOFAS | 1.0 | 9.0 | ns | | frozen) | | | | | | RTT dynamic change skew | tADC | 0.3 | 0.7 | tCK(avg) | | Write Leveling Timing | | | | | | First DQS_t/DQS_n rising edge | | | | | | af-ter write leveling mode is | tWLMRD | 40 | - | nCK | | pro-grammed | | | | | | DQS_t/DQS_n delay after | | | | | | write lev-eling mode is | tWLDQSEN | 25 | - | nCK | | programmed | | | | | | Write leveling setup time | | | | | | from rising CK_t, CK_c | tWLS | 0.13 | _ | tCK(avg) | | crossing to rising | (WLS | 0.13 | - | (CK(avg) | | DQS_t/DQS_n crossing | | | | | | Write leveling hold time from | | | | | | rising DQS_t/DQS_n crossing | tWLH | 0.13 | - | tCK(avg) | | to rising CK_t, CK_ crossing | | | | | | Write leveling output delay | tWLO | 0 | 9.5 | ns | | Write leveling output error | tWLOE | | 2 | ns | | CA Parity Timing | | | | | | Commands not guaranteed to | tPAR UN-KNOWN | | PL | | | be executed during this time | tPAR_ON-KNOWN | - | PL | | | Delay from errant command | +DAD ALED T ON | | Discon | | | to ALERT_n assertion | tPAR_ALER T_ON | | PL+6ns | | | Pulse width of ALERT_n signal | +DAD ALED 7 DW | 90 | 160 | ~CV | | when asserted | tPAR_ALER T_PW | 80 | 160 | nCK | | Time from when Alert is | | | | | | asserted till controller must | | | | | | start providing DES | tPAR_ALER T_RSP | - | 71 | nCK | | commands in Persistent CA | | | | | | parity mode | | | | | | Parity Latency | PL | Į | 5 | nCK | |------------------------------|---------------|-----|----|-----| | CRC Error Reporting | | | | | | CRC error to ALERT_n latency | tCRC_ALER T | 3 | 13 | ns | | CRC ALERT_n pulse width | CRC_ALER T_PW | 6 | 10 | nCK | | tREFI | | | | | | | 2Gb | 160 | - | ns | | 4DFC1 (min) | 4Gb | 260 | - | ns | | tRFC1 (min) | 8Gb | 350 | - | ns | | | 16Gb | TBD | - | ns | | | 2Gb | 110 | - | ns | | | 4Gb | 160 | - | ns | | tRFC2 (min) | 8Gb | 260 | - | ns | | | 16Gb | TBD | - | ns | | | 2Gb | 90 | - | ns | | ADEC2 (min) | 4Gb | 110 | - | ns | | tRFC3 (min) | 8Gb | 160 | - | ns | | | 16Gb | TBD | - | ns | Rev 1.0 # 10. PACKAGE DIMENSION - (8GB, 2 Rank 512Mx8 DDR4 base RDIMM) Note: All dimensions are in millimeters (mils) and should be kept within a tolerance of $\pm 0.15$ (6), unless otherwise specified ### 11. RoHS Declaration # 宜鼎國際股份有限公司 # **Innodisk Corporation** Tel:(02)7703-3000 Fax:(02) 7703-3555 Internet: http://www.innodisk.com/ ### ROHS 自我宣告書(RoHS Declaration of Conformity) ### Manufacturer Product: All Innodisk EM Flash and Dram products - 一、 宜鼎國際股份有限公司(以下稱本公司)特此保證售予貴公司之所有產品,皆符合歐盟 2011/65/EU及(EU) 2015/863 關於 RoHS之規範要求。 - Innodisk Corporation declares that all products sold to the company, are complied with European Union RoHS Directive (2011/65/EU) and (EU) 2015/863 requirement. - 二、 本公司同意因本保證書或與本保證書相關事宜有所爭議時,雙方宜友好協商,達成協議。 Innodisk Corporation agrees that both parties shall settle any dispute arising from or in connection with this Declaration of Conformity by friendly negotiations. - 三、 本公司聲明我們的產品符合 RoHS 指令的附件中(7a)、(7c-I)允許豁免。 We declare, our products permitted by the following exemptions specified in the Annex of the RoHS directive. - % (7a) Lead in high melting temperature type solders(i.e. lead-based alloys containing 85% by weight or more lead). - ※ (7C-I) Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, e.g. piezoelectric devices, or in a glass or ceramic matrix compound. | Name of hazardous substance | Limited of RoHS ppm (mg/kg) | |-----------------------------|-----------------------------| | 鉛 (Pb) | < 1000 ppm | | 汞 (Hg) | < 1000 ppm | | 鎘 (Cd) | < 100 ppm | | 六價鉻 (Cr 6+) | < 1000 ppm | | 多溴聯苯 (PBBs) | < 1000 ppm | | 多溴二苯醚 (PBDEs) | < 1000 ppm | | 鄰苯二甲酸二(2-乙基己基)酯 (DEHP) | < 1000 ppm | | 鄰苯二甲酸丁酯苯甲酯 (BBP) | < 1000 ppm | | 鄰苯二甲酸二丁酯 (DBP) | < 1000 ppm | | 鄰苯二甲酸二異丁酯 (DIBP) | < 1000 ppm | 立 保 證 書 人 (Guarantor) Company name 公司名稱: Innodisk Corporation 宜鼎國際股份有限公司 Company Representative 公司代表人: Randy Chien 簡川勝 Company Representative Title 公司代表人職稱: Chairman 董事長 Date 日期: 2018 / 07 / 01 # **Revision Log** | Rev | Date | Modification | |-----|---------------------------|---------------------| | 0.1 | 15 <sup>th</sup> May 2019 | Preliminary Edition | | 1.0 | 15 <sup>th</sup> May 2019 | Official Released |