

Industrial SD Card

SD Series

Customer:	
Customer	
Part Number:	
Innodisk	
Part Number:	
Innodisk	
Model Name:	
Date:	

the total solution for industrial flash storage

Table of contents

1.	PRO	DUCT INTRODUCTION	7
	1.1.	OVERVIEW	. 7
	1.2.	PRODUCT PICTURE	. 7
	1.3.	PRODUCT FEATURES	. 7
2.	THE	ORY OF OPERATION	8
	2.1.	OVERVIEW	. 8
	2.2.	ERROR DETECTION AND CORRECTION ECC	. 8
	2.3.	WEAR-LEVELING	. 8
	2.4.	BAD BLOCKS MANAGEMENT	. 9
3.	SPE	CIFICATIONS	9
	3.1.	MECHANICAL DIMENSIONS	. 9
	3.2.	PERFORMANCE 1	10
	3.3.	NAND FLASH MEMORY	10
	3.4.	Power Requirement	10
	3.4.1	. DC Input Voltage	10
	3.4.2	Power Mode	10
	3.4.3	Power Consumption	10
	3.5.	STORAGE TEMPERATURE RANGE	11
	3.6.	HUMIDITY	11
	3.7.	SHOCK AND VIBRATION	11
	3.8.	SYSTEM RELIABILITY	11
	3.8.1	. ECC Technology	11
	3.8.2	. Mean Time between Failures (MTBF)	11
	3.8.3	Enhanced Power Cycling Technology	12
	3.9.	CERTIFICATE	12
	3.10.	PIN DESCRIPTION	12
	3.10.	1. Industrial SD Card Pin Direction	12
	3.10.	2. Pin Assignment	12
4.	ELE	CTRICAL SPECIFICATIONS1	13
	4.1.	GENERAL DC CHARACTER	13
	4.2.	BUS SIGNAL LINE LOADING.	13
	4.3.	Bus Signal Level	14
	4.4.	BUS TIMING (HIGH SPEED MODE)	15
5.	REG	SISTER TABLE 1	15

	5.1.	OPERATION CONDITION REGISTER (OCR)	15
	5.2.	CARD IDENTIFICATION REGISTER (CID)	16
	5.3.	RELATIVE CARD ADDRESS REGISTER (RCA)	17
	5.4.	CARD SPECIFIC DATA REGISTER (CSD)	17
	5.5.	SD CARD CONFIGURATION REGISTER (SCR)	19
6.	COM	IMANDS	20
7.	PAR	T NUMBER RULE	25
	7.1 Old	VERSION:	25
	7.2 New	VERSION	25

REVISION HISTORY

Revision	Description	Date
Preliminary	First released	Jul., 2010
1.0	Update performance information for 1GB	Sep., 2010
1.1	1. Added SD Bus Mode Command Table	Sep., 2010
1.2	1. Add Part Number Rule	May, 2011
	2. Updated speed info. for 128MB	
1.3	Modify description	Aug., 2011
1.4	1. Add 16GB capacity	Jul., 2012
1.5	Add description about power cycling	Jul., 2012
1.6	Modify description of performance	Aug., 2012
1.7	1. Add Golden finger 30u"	May, 2013
	2. Modify Part Number Rule	
1.8	Add 32GB capacity	Jun.,2013
1.9	Modify Part Number Rule	Sep.,2013
2.0	Update 512MB,1GB,2GB Model with 24nm SLC NAND	May, 2020
	and new Part number rule.	
2.1	Update 24m 512MB ,1GB, 2GB performance	Jun., 2020
2.2	Revised PN Rules	Nov., 2024

List of Tables

TABLE 1: INNODISK INDUSTRIAL SD CARD POWER CONSUMPTION	10
Table 2: Shock/Vibration Testing for Innodisk Industrial SD Card	11
TABLE 3: INNODISK INDUSTRIAL SD CARD MTBF	11
Table 4: Innodisk Industrial SD Card Pin Assignment	12
Table 5: General DC Character	13
Table 6: Bus Signal Line Loading	13
Table 7: Bus Signal Level	14
TABLE 8: HIGH SPEED MODE BUS TIMING	15
TABLE 9: INNODISK INDUSTRIAL SD CARD OCR TABLE	16
TABLE 10: INNODISK INDUSTRIAL SD CARD CID TABLE	16
TABLE 11: INNODISK INDUSTRIAL SD CARD CSD TABLE FOR HIGH CAPACITY	17
TABLE 12: INNODISK INDUSTRIAL SD CARD CSD TABLE FOR STANDARD CAPACITY	18
TABLE 13: INNODISK INDUSTRIAL SD CARD SCR TABLE	19
TABLE 14: SD BUS MODE COMMAND TABLE	20

List of Figures

FIGURE 1: INDUSTRIAL SD CARD PICTURE	7
FIGURE 2: INNODISK INDUSTRIAL SD CARD ARCHITECTURE	8
FIGURE 3: INNODISK INDUSTRIAL SD CARD MECHANICAL DIMENSIONS	9
FIGURE 4: SIGNAL SEGMENT AND POWER SEGMENT	12
FIGURE 5: BUS SIGNAL LEVEL	14
FIGURE 6: TIMING DIAGRAM DATA INPUT/OUTPUT REFERENCED TO CLOCK	15

1. Product Introduction

1.1. Overview

Innodisk Industrial SLC SD Card is a slim and low power consumed storage module that designed especially for portable devices. Innodisk Industrial SLC SD Card is compatible with SD 2.0/1.1/1.01 standard and supports SDHC Class 10 that provides excellent performance. The built-in auto ECC function can also detect and correct errors during data transfer. Moreover, Innodisk Industrial SLC SD Card supports standby and sleep mode that reduces power consumption in advance for application with limited power source.

1.2. Product Picture

Figure 1: Industrial SD Card picture

1.3. Product Features

Interface: 9 pins SD standard interface

SLC NAND Flash

Capacity

SD: 128MB, 256MB, 512MB, 1GB, 2GB

■ SDHC: 4GB, 8GB, 16GB, 32GB

■ Data transfer rate (Max.): Read: 23MB/sec, Write: 20MB/sec

• Built-in ECC corrects up to 24 bits per 1 KB

Durability

■ Insertion/removal: 10,000 cycles

■ Write protect switch: 1,000 cycles

- Dimension: 24.00 x 32.00 x 2.10 mm
- Enhanced Power Cycling: Pass 1,000 times copy and compare test under Non-Safe Mode/Safe Mode.
- Golden finger 30u".

2. Theory of operation

2.1. Overview

Figure 2 shows the operation of Innodisk Industrial SD Card from the system level, including the major hardware blocks.

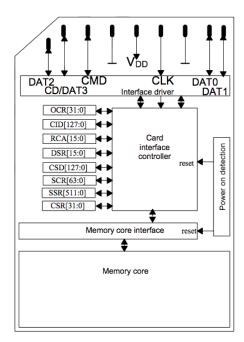


Figure 2: Innodisk Industrial SD Card Architecture

2.2. Error Detection and Correction ECC

Highly sophisticated Error Correction Code algorithms are implemented. The ECC unit consists of the Parity Unit (parity-byte generation) and the Syndrome Unit (syndrome-byte computation). This unit implements an algorithm that can correct 24 bits per 1 KB in an ECC block. Code-byte generation during write operations, as well as error detection during read operation, is implemented on the fly without any speed penalties.

2.3. Wear-Leveling

Flash memory can be erased within a limited number of times. This number is called the *erase cycle limit* or *write endurance limit* and is defined by the flash array vendor. The erase cycle limit applies to each individual erase block in the flash device.

Innodisk Industrial SD Card uses a wear-leveling algorithm to ensure that consecutive writes of a specific sector are not written physically to the same page and block in the flash. This spreads flash media usage evenly across all pages, thereby extending flash lifetime.

2.4. Bad Blocks Management

Bad Blocks are blocks that contain one or more invalid bits whose reliability are not guaranteed. The Bad Blocks may be presented while the SD is shipped, or may develop during the life time of the SD. The Bad Blocks will not exceed more than 3% of the total device volume. When the Bad Blocks is detected, it will be flagged, and not be used anymore. The SD implement Bad Blocks management, Bad Blocks replacement, Error Correct Code to avoid data error occurred. The functions will be enabled automatically to transfer data from Bad Blocks to spare blocks, and correct error bit.

3. Specifications

3.1. Mechanical Dimensions

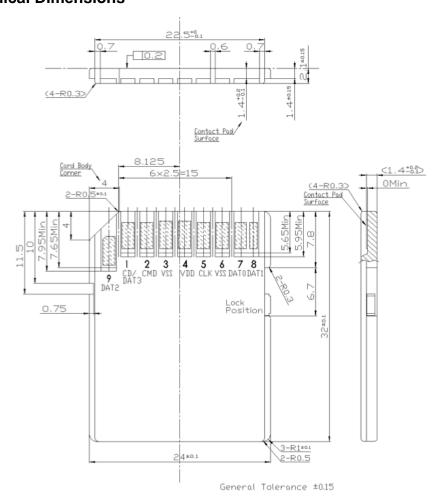


Figure 3: Innodisk Industrial SD Card mechanical dimensions

3.2. Performance

Data Transfer Rate (Sequential Read/Write, Max.)

	SLC											
Capacity	128	256	512	512	1	1	2	2	4	8	16	32
	МВ	МВ	МВ	МВ	GB							
	(24nm)	(24nm)	(32nm)	(24nm)	(32nm)	(24nm)	(32nm)	(24nm)	(24nm)	(24nm)	(24nm)	(24nm)
Class	6	6	6	6	6	6	6	6	10	10	10	10
Sequential	19	19	19	23	19	23	19	23	20	20	20	20
Read	MB/sec											
(max.)	MB/Sec											
Sequential	10	10	-10	10	10	10	10	20	4.6	4.6	16	4.6
Write	12	12	12	18	12	18	12	20	16	16	16	16
(max.)	MB/sec											

Note:1. 24 nm 512MB /1 GB /2 GB Capacity base on CrystalDiskMark 5.1.2 with file size 100MB.

- 2. Others capacity base on CrystalDiskMark 3.0.2 with file size 100MB.
- 3. Performance may vary based on various firmware version or test platform.

3.3. NAND Flash Memory

Innodisk Industrial SLC SD Card uses Single Level Cell (SLC) NAND flash memory, which is non-volatility, high reliability and high speed memory storage. Read or Write data to flash memory for SD is control by micro processor.

3.4. Power Requirement

3.4.1. DC Input Voltage

Item	Symbol	Rating	Unit
Input voltage	V_{IN}	2.7~3.6	V

3.4.2. Power Mode

Auto stand-by and sleep mode

3.4.3. Power Consumption

Table 1: Innodisk Industrial SD Card power consumption

Sustained Read(RMS)	50 mA
Sustained Write(RMS)	60 mA
IDLE(RMS)	65 µA

3.5. Storage Temperature Range

Operating Temperature Range

■ Standard Grade: 0°C to +70°C

■ Wide Temp: -40°C to +85°C

Storage Temperature Range: -55°C to +95°C

3.6. Humidity

Relative Humidity: 10-95%, non-condensing

3.7. Shock and Vibration

Table 2: Shock/Vibration Testing for Innodisk Industrial SD Card

Reliability	Test Conditions
Vibration	7 Hz to 2000 Hz, 5G, 3 axes
Mechanical Shock	Duration: 10ms, 50G, 3 axes

3.8. System Reliability

3.8.1. ECC Technology

High reliability based on the internal error correct code (ECC) function. Built-in ECC corrects up to 24 bits per 1 KB.

3.8.2. Mean Time between Failures (MTBF)

Table 2 summarizes the MTBF prediction results for various Innodisk Industrial SD Card configurations. The analysis is performed using a RAM Commander^{\dagger} failure rate prediction.

- **Failure Rate**: The total number of failures within an item population, divided by the total number of life units expended by that population, during a particular measurement interval under stated condition.
- Mean Time between Failures (MTBF): A basic measure of reliability for repairable items: The mean number of life units during which all parts of the item perform within their specified limits, during a particular measurement interval under stated conditions.

Table 3: Innodisk Industrial SD Card MTBF

Product	Condition	MTBF (Hours)
Innodisk Industrial SD Card	Telcordia SR-332 GB, 25°C	> 4,000,000

3.8.3. Enhanced Power Cycling Technology

In order to make sure Innodisk Industrial SD Card can work well under unstable power supply environments. Our FW enhance the power cycling ability and pass following test modes with 1,000 times.

- Non-Safe Mode test: Power off when accessing files.
- Safe Mode test: Power off when accessing files finish.

3.9. Certificate

- CE and FCC Compatibility
 Innodisk Industrial SD Card conforms to CE and FCC requirements.
- RoHS Compliance
 Innodisk Industrial SD Card is fully compliant with RoHS directive.

3.10. Pin Description

3.10.1. Industrial SD Card Pin Direction

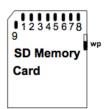


Figure 4: Signal Segment and Power Segment

3.10.2. Pin Assignment

Table 4 demonstrates Innodisk Industrial SD Card pin assignments.

Table 4: Innodisk Industrial SD Card Pin Assignment

Din #	SD Mode			SPI Mode				
Pin #	Name	Type ¹	Description	Name	Type ¹	Description		
1	CD/DAT3 ²	I/O/PP ³	Card Detect/Data Line [Bit 3]	CS	l ₃	Chip Select (neg true)		
2	CMD	I/O/PP	Command/Response	DI	I	Data In		
3	V _{SS1}	S	Supply voltage ground	Vss	S	Supply voltage ground		
4	V_{DD}	S	Supply voltage	V_{DD}	S	Supply voltage		
5	CLK	I	Clock	SCLK	I	Clock		

6	V _{SS2}	S	Supply voltage ground	V _{SS2}	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line [Bit 0]	DO	O/PP	Data Out
8	DAT1 ⁴	I/O/PP	Data Line [Bit 1]	RSV		
9	DAT2 ⁵	I/O/PP	Data Line [Bit 2]	RSV		

- 1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers
- 2) The extended DAT lines (DAT1-DAT3) are inout on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used.
- 3) At power up this line has a 50KOhm pull up enabled in the card. This resistor serves two functions Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode it should drive the line low. For Card deception, the host detects that the line is pulled high. This pull-up should be disconnected by the user, during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command.
- 4) DAT1 line may be used as Interrupt Output (from the Card) in SDIO mode during all the times that it is not in use for data transfer operations (refer to "SDIO Card Specification" for further details).
- 5) DAT2 line may be used as Read Wait signal in SDIO mode (refer to "SDIO Card Specification" for further details).

4. Electrical Specifications

4.1. General DC Character

Table 5: General DC Character

Parameter	Symbol	Min.	Max.	Unit	Remark				
Peak voltage on all lines		-0.3	3.6	V					
All input leakage current		-10	10	μA					
All output leakage current		-10	10	μA					
Supply voltage for low voltage range	V _{DDL}	1.7	1.95	V					
Supply voltage for high voltage range	V _{DDH}	2.7	3.6	V					
Supply voltage differential		-0.5	0.5	V					

4.2. Bus Signal Line Loading

Table 6: Bus Signal Line Loading

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull up resistance for SDC line	R _{CMD}	10	100	K Ohm	To prevent bus floating
Pull up resistance for SDD line	R _{DAT}	10	100	K Ohm	To prevent bus floating
Total Bus capacitance for each	CL		40	pF	Single card

signal line					C _{HOST} +C _{BUS} shall not exceed 30 pF
Signal line inductance			16	nΗ	f _{PP} <= 20 MHZ
Pull-up resistance inside card (pin 1)	R _{DAT3}	10	90	K Ohm	May be used for card detection

4.3. Bus Signal Level

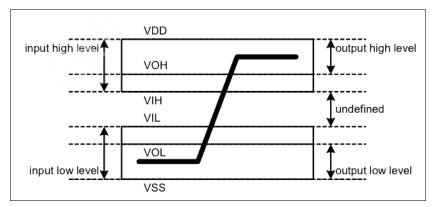


Figure 5: Bus Signal Level

Table 7: Bus Signal Level

Parameter	Symbol	Min.	Max.	Unit	Remark
Output High voltage	Vон	2.4		V	$V_{DD} = 3.3V$
Output Low voltage	Vol		0.4	V	$V_{DD} = 3.3V$
Input High voltage	ViH	2	3.6	V	$V_{DD} = 3.3V$
Input Low voltage	VIL	-0.3	0.8	V	$V_{DD} = 3.3V$
Output High voltage	Vон	1.6		V	$V_{DD} = 1.8V$
Output Low voltage	V _{OL}		0.2	V	$V_{DD} = 1.8V$
Input High voltage	ViH	1.26	2.1	V	$V_{DD} = 1.8V$
Input Low voltage	VIL	-0.3	0.54	V	$V_{DD} = 1.8V$

4.4. Bus Timing (High Speed Mode)

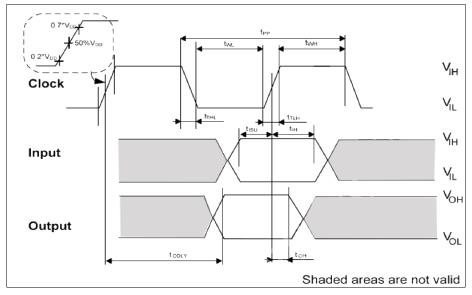


Figure 6: Timing diagram data input/output referenced to clock

Table 8: High Speed Mode Bus Timing

Parameter	Symbol	Min.	Max.	Unit	Remark					
i didiliotoi			Maxi	O.III	- Tomani					
Input SDCK										
Clock frequency data transfer mode	f_{PP}	0	50	MHz	C _{CARD} <= 10pF (1 card)					
Clock low time / Clock high time	t _{WL} / t _{WH}	7		ns	C _{CARD} <= 10pF (1 card)					
Clock rise time / Clock fall time	t _{TLH} / t _{THL}		3	ns	C _{CARD} <= 10pF (1 card)					
Input SDD/SDC, reference to SDCK										
Input set-up time	t _{ISU}	6		ns	C _{CARD} <= 10pF (1 card)					
Input hold time	tıн	2		ns	Ccard <= 10pF (1 card)					
Output SDD	/SDC, refer	ence to	SDCK							
Output delay time during Data Transfer Mode	todly		14	ns	C _L <= 40pF (1 card)					
Output hold time	tон	2.5		ns	C _L >= 15pF (1 card)					
Total System capacitance for each line	CL		40	pF						

5. Register Table

5.1. Operation Condition Register (OCR)

The 32-bit operation conditions register stores the VDD voltage profile of the card. In addition, this register includes status information bits. One status bit is set if the card power up procedure has been finished. This register includes another status bit indicating the card capacity status after set power up status bit. The OCR register

shall be implemented by all cards. As long as the card is busy, the corresponding bit (31) is set to LOW.

Additionally, this register includes 2 more status information bits. Bit 31 – Card power up status bit, this status bit is set if the card power up procedure has been finished. Bit 30 – Card capacity status bit, this status bit is set to 1 if card is High Capacity SD Memory Card. 0 indicates that the card is Standard Capacity SD Memory Card. The Card Capacity status bit is valid after the card power up procedure is completed and the card power up status bit is set to 1. The Host shall read this status bit to identify a Standard or High Capacity SD Memory Card.

OCR bit VDD voltage window Value 000 0000 b [6:0] Reserved 1.7V - 1.95V [7] 0 b [14:8] 2.0V - 2.6V000 0000 b [23:15] 2.7V - 3.6V1 1111 1111 b [29:24] Reserved 00 0000 b Card capacity status [30] [31] Card power status

Table 9: Innodisk Industrial SD Card OCR Table

5.2. Card Identification Register (CID)

The Card IDentification (CID) register is 128 bits wide. It contains the card identification information used during the card identification phase. Every individual flash card shall have a unique identification number. The structure of the CID register is defined in the following table.

CID bit	Width	Name	Field
[127:120]	8	Manufacturer ID	MID
[119:104]	16	OEM/Application ID	OID
[103:64]	40	Product Name	PNM
[63:56]	8	Product Revision	PRV
[55:24]	32	Product Serial Number	PSN
[23:20]	4	Reserved	
[19:8]	12	Manufacturing Date	MDT
[7:1]	7	CRC7 check sum	CRC
[0]	1	Not used, always '1'	

Table 10: Innodisk Industrial SD Card CID Table

5.3. Relative Card Address Register (RCA)

The writable 16-bit relative card address register carries the card address this is published by the card during the card identification. This address is used for the addressed host-card communication after the card identification procedure. The default value of the RCA register is 0x0000. The value 0x0000 is reserved to set all cards into the Stand-by State with CMD7

5.4. Card Specific Data Register (CSD)

The Card-Specific Data register provides information on how to access the card contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register can be changed by CMD27.

Table 11: Innodisk Industrial SD Card CSD Table for High Capacity

CSD bit	Width	Name	Field	Value	Note
[127:126]	2	CSD Structure	CSD_STRUCTURE	01 b	v.2.0
[125:120]	6	Reserved			
[119:112]	8	Data read access time 1	TAAC	0E h	1ms (*3)
[111:104]	8	Data read access time 2	NSAC	00 h	(*3)
[103:96]	8	Max. data transfer rate	TRAN_SPEED	32 h	25MHz
[95:84]	12	Card command classes	CCC	5F5h	(*1)
[83:80]	4	Max. read data block length	READ_BL_LEN	9 h	512bytes(*3)
[79]	1	Partial block read allowed	READ_BL_PARTIAL	0 b	Not Supported (*3)
[78]	1	Write block misalignment	WRITE_BLK_MISALIGN	0 b	Not Supported (*3)
[77]	1	Read block misalignment	READ_BLK_MISALIGN	0 b	Not Supported (*3)
[76]	1	DSR implemented	DSR_IMP	0 b	Not supported (*3)
[75:70]	6	Reserved		000000b	
[69:48]	22	Device size	C_SIZE	(*2)	(*2)
[47]	1	Reserved		0 b	
[46]	1	Erase single block enable	ERASE_BLK_EN	1 b	Allowed (*3)
[45:39]	7	Erase sector size	SECTOR_SIZE	7Fh	64KB (*3)
[38:32]	7	Write protect group size	WP_GRP_SIZE	00h	(*3)
[31]	1	Write protect group enable	WP_GRP_ENABLE	0 b	Not Supported (*3)
[30:29]	2	Reserved			
[28:26]	3	Write speed factor	R2W_FACTOR	010 b	4X (*3)

[25:22]	4	Max. write data block length	WRITE_BL_LEN	9 h	512bytes (*3)
[21]	1	Partial block write allowed	WRITE_BL_PARTIAL	0 b	Not Supported (*3)
[20:16]	5	Reserved			
[15]	1	File format group	FILE_FORMAT_GRP	0 b	HD like FAT (*3)
[14]	1	Copy flag	COPY	0 b	Not copied
[13]	1	Permanent write protection	PERM_WRITE_PROTECT	0 b	Not protected
[12]	1	Temporary write protection	TMP_WRITE_PROTECT	0 b	Not protected
[11:10]	2	File format	FILE_FORMAT	00 b	HD like FAT (*3)
[9:8]	2	ECC code	ECC	00 b	None
[7:1]	7	CRC	CRC		
[0]	1	Not used, always '1'		1 b	

- (*1) Support command class 0,2,4,5,6,7,8,10, including: Basic, Block read/write, Erase, Write protection, Application command, Lock card and switch function. Not support 1,3, including: Stream read/write.
- (*2) The value will be changed by different flash memory.
- (*3) The field name in parenthesis is set to fixed value and indicates that the host is not necessary to refer these fields. The fixed values enable host, which refers to these fields, to keep compatibility to CSD Version 1.0.

Table 12: Innodisk Industrial SD Card CSD Table for Standard Capacity

CSD bit	Width	Name	Field	Value	Note
[127:126]	2	CSD Structure	CSD_STRUCTURE	00 b	v1.0-v1.1 v2.0 (<= 2GB)
[125:120]	6	Reserved			
[119:112]	8	Data read access time 1	TAAC	7F h	80ms
[111:104]	8	Data read access time 2	NSAC	FF h	25.5K clocks
[103:96]	8	Max. data transfer rate	TRAN_SPEED	32 h	25MHz
[95:84]	12	Card command classes	CCC	5F5h	(*1)
[83:80]	4	Max. read data block length	READ_BL_LEN	9 h	512bytes
[79]	1	Partial block read allowed	READ_BL_PARTIAL	1 b	Supported
[78]	1	Write block misalignment	WRITE_BLK_MISALIGN	1 b	Supported
[77]	1	Read block misalignment	READ_BLK_MISALIGN	1 b	Supported
[76]	1	DSR implemented	DSR_IMP	0 b	Not supported
[75:74]	2	Reserved			
[73:62]	12	Device size	C_SIZE	(*2)	(*2)
[61:59]	3	Max. R_curr @ V _{DD} min	VDD_R_CURR_MIN	101 b	35mA

[58:56]	3	Max R_curr @ V _{DD} max	VDD_R_CURR_MAX	101 b	45mA
[55:53]	3	Max. W_curr @ V _{DD} min	VDD_W_CURR_MIN	101 b	35mA
[52:50]	3	Max W_curr @ V _{DD} max	VDD_W_CURR_MAX	101 b	45mA
[49:47]	3	Device size multiplier	C_SIZE_MULT	(*2)	(*2)
[46]	1	Erase single block enable	ERASE_BLK_EN	0 b	Not Allowed
[45:39]	7	Erase sector size	SECTOR_SIZE	(*3)	(*3)
[38:32]	7	Write protect group size	WP_GRP_SIZE	(*4)	(*4)
[31]	1	Write protect group enable	WP_GRP_ENABLE	1 b	Supported
[30:29]	2	Reserved			
[28:26]	3	Write speed factor	R2W_FACTOR	101 b	32X
[25:22]	4	Max. write data block length	WRITE_BL_LEN	9 h	512bytes
[21]	1	Partial block write allowed	WRITE_BL_PARTIAL	1 b	Supported
[20:16]	5	Reserved			
[15]	1	File format group	FILE_FORMAT_GRP	0 b	HD like FAT
[14]	1	Copy flag	COPY	0 b	Not copied
[13]	1	Permanent write protection	PERM_WRITE_PROTE CT	0 b	Not protected
[12]	1	Temporary write protection	TMP_WRITE_PROTEC T	0 b	Not protected
[11:10]	2	File format	FILE_FORMAT	00 b	HD like FAT
[9:8]	2	ECC code	ECC	00 b	None
[7:1]	7	CRC	CRC		
[0]	1	Not used, always '1'		1 b	

^(*1) Support command class 0,2,4,5,6,7,8,10, including: Basic, Block read/write, Erase, Write protection, Application command, Lock card and switch function. Not support 1,3, including: Stream read/write.

(*2)~(*4) The value will be changed by different flash memory.

5.5. SD card Configuration Register (SCR)

The CSD register is another configuration register in SD card. SCR provides on SD card's special features that were configured into the given card. The size of SCR is 64 bit. SCR is a read only register.

Table 13: Innodisk Industrial SD Card SCR Table

SCR bit	Width	Name	Field	Value	Note
[63:60]	4	SCR structure	SCR_STRUCTURE	0000 b	v1.0-v2.0
[59:56]	4	SD Card spec. version	SD_SPEC	0010 b	v2.0
[55]	1	Data status after erase	DATA_STAT_AFTER_ ERASE	0 b	Zero after erase
[54:52]	3	SD security support	SD_SECURITY	011 b	Secure-Protocol 2.0

[51:48]	4	DAT bus width support	SD_BUS_WIDTH	0101 b	Support 1 / 4 bits
[47:32]	16	Reserved			
[31:0]	32	Reserved			

6. Commands

The following table describe in detail all SD Memory Card bus commands.

Table 14: SD Bus Mode Command Table

CMD Index	Abbreviation	Description						
CMD0	GO_IDLE_STATE	Resets all cards to idle state						
CMD1	Reserved							
OMPO	ALL OFNE OID	Asks any card to send the CID numbers on the CMD line						
CMD2	ALL_SEND_CID	(any card that is connected to the host will respond)						
CMD3	SEND_RELATIVE_ ADDR	Ask the card to publish a new relative address (RCA)						
CMD4	SET_DSR	Programs the DSR of all cards						
CMD5	Reserved for I/O cards							
CMD6	Reserved							
		Command toggles a card between the stand-by and						
		transfer states or between the programming and						
		disconnect states. In both cases the card is selected by						
		its own relative address and gets deselected by any						
CMD7	SELECT/DESELECT CARD	other address; address 0 deselects all. In the case that						
CIVIDI	SELECT/DESELECT_CARD	the RCA equals 0, then the host may do one of the						
		following:						
		- use other RCA number to perform card de-selection.						
		- re-send CMD3 to change its RCA number to other than						
		0 and then use CMD7 with RCA-0 for card de-selection						
		Send SD Memory Card interface condition, which						
CMD8	SEND IE COND	includes host supply voltage information and asks the						
CIVIDO	SEND_IF_COND	card whether card supports voltage. Reserved bits shall						
		be set to '0'						
CMD9	SEND_CSD	Addressed card sends its card-specific data (CSD) on						
CIVIDS	SEIND_COD	the CMD line.						
CMD10	SEND_CID	Addressed card sends its card identification (CID) on						
CIVID 10	SLIND_CID	CMD the line.						

CMD11	VOLTAGE_SWITCH	Switch to 1.8V bus signaling level.							
CMD12	STOP_TRANSMISSION	Forces the card to stop transmission							
CMD13	SEND_STATUS	Addressed card sends its status register.							
CMD14	Reserved								
		Sends an addressed card into the Inactive State. This							
CMD15	GO_INACTIVE_ STATE	command is used when the host explicitly wants to							
		deactivate a card. Reserved bits shall be set to '0'.							
		In the case of a Standard Capacity SD Memory Card, this							
		command sets the block length (in bytes) for all following							
		block commands (read, write, lock). Default block length							
		is fixed to 512 Bytes. Set length is valid for memory							
		access commands only if partial block read operation are							
		allowed in CSD. In the case of SDHC and SDXC Cards,							
CMD16	SET_BLOCKLEN	block length set by CMD16 command doesn't affect							
		memory read and write commands. Always 512 Bytes							
		fixed block length is used. This command is effective for							
		LOCK_UNLOCK command.In both cases, if block len							
		is set larger than 512 Bytes, the card sets the							
		BLOCK_LEN_ERROR bit.In DDR50 mode, data is							
		sampled on both edges of the clock. Therefore, block							
		length shall always be even.							
		In the case of a Standard Capacity SD Memory Card, this							
		command reads a block of the size selected by the							
CMD17	READ_SINGLE_ BLOCK	SET_BLOCKLEN command.							
		In caes of SDHC and SDXC Cards, block length is fixed							
		512 Bytes regardless of the SET_BLOCKLEN command.							
		Continuously transfers data blocks from card to host until							
CMD18	READ_MULTIPLE_ BLOCK	interrupted by a STOP_TRANSMISSION command.							
		Block length is fixed 512 Bytes regardless of the							
		SET_BLOCKLEN command.							
CMD19	SEND_TUNING_BLOCK	64 bytes tuning pattern is sent for SDR50 and SDR104.							
CMD20	SPEED_CLASS_CONTROL	Speed Class control command.							
CMD21-22	Reserved								
CMD23	SET_BLOCK_COUNT	Specify block count for CMD18 and CMD25.							
		In case of SDSC Card, block length is set by the							
CMD24	WRITE_BLOCK	SET_BLOCKLEN command.							
		In case of SDHC and SDXC Cards, block length is fixed							

		512 Bytes regardless of the SET_BLOCKLEN command.
CMD25	WRITE_MULTIPL E_BLOCK	Continuously writes blocks of data until a STOP_TRANSMISSION follows. Block length is specified the same as WRITE_BLOCK command.
CMD26	Reserved For Manufacturer	
CMD27	PROGRAM_CSD	Programming of the programmable bits of the CSD.
CMD28	SET_WRITE_PROT	If the card has write protection features, this command sets the write protection bit of the addressed group. The properties of write protection are coded in the card specific data (WP_GRP_SIZE).SDHC and SDXC Cards do not support this command.
CMD29	CLR_WRITE_PROT	If the card provides write protection features, this command clears the write protection bit of the addressed group. SDHC and SDXC Cards do not support this command.
CMD30	SEND_WRITE_ PROT	If the card provides write protection features, this command asks the card to send the status of the write protection bits. SDHC and SDXC Cards do not support this command.
CMD31	Reserved	
CMD32	ERASE_WR_BLK_START	Sets the address of the first sector to be erased.
CMD33	ERASE_WR_BLK_END	Sets the address of the last sector of the continuous range to be erased.
CMD34-37	Reserved	
CMD38	ERASE	Erases all previously selected write blocks.
CMD39	Reserved	
CMD40	Reserved for Secutiry Specification	on
CMD41	Reserved	
CMD42	LOCK_UNLOCK	Used to set/reset the password or lock/unlock the card. The size of the data block is set by the SET_BLOCK_LEN command. Reserved bits in the argument and in Lock Card Data Structure shall be set to 0.

CMD43-51	Reserved										
CMD52-54	Commands for SDIO										
		Indicates to the card that the next command is an									
CMD55	APP_CMD	application specific command rather than a standard									
		command.									
		Used either to transfer a data block to the card or to get a									
		data block from the card for general purpose / application									
CMD56		specific commands. In case of a SDSC Card, block									
	GEN_CMD	length is set by the SET_BLOCK_LEN command. In									
		case of SDHC and SDXC Cards, block length is fixed to									
		512 Bytes. The host sets RD/WR=1 for reading data from									
		the card and sets to 0 for writing data to the card.									
CMD57-59	Reserved										
CMD60-63	Reserved For Manufacturer										
Application-specific Commands											
ACMD Index	Abbreviation	Description									
ACMD1-5	Reserved										
		Defines the data bus width ('00'-1bit or '10'=4 bits bus_ to									
ACMD6	SET_BUS_WIDTH	be used for data transfer. The allowed data bus widths									
		are given in SCR register.									
ACMD7-12	Reserved										
ACMD13	SD_STATUS	Send the SD Status.									
ACMD14-16	Reserved for Security Specificatio	n									
ACMD17	Reserved										
ACMD18	Reserved for SD security applicati	ons									
ACMD19-21	Reserved										
		Send the number of the written (without error) write									
		blocks. Responds with 32bit+CRC data block.									
		If WRITE_BL_PARTIAL='0', the unit of ACMD22 is									
ACMD22	SEND_NUM_WR_BLOCKS	always 512 byte.									
		If WRITE_BL_PARTIAL='1', the unit of ACMD22 is a									
		block length which was used when the write command									
		was executed.									
		Set the number of write blocks to be pre-erased before									
ACMD23	SET_WR_BLK_ERASE_COUNT										
		command). "1"=default (one wr block).									
ACMD24	Reserved										
ACMD25-28	Reserved for SD security applicati	ons									

ACMD29	Reserved										
ACMD30-35	Reserved for Security Specification										
ACMD36-37	Reserved										
ACMD38	Reserved for SD security applicati	ons									
ACMD39-40	Reserved										
		Sends host capacity support information (HCS) and asks									
		the accessed card to send its operating confition register									
		(OCR) content in the response on the CMD line. HCS is									
		effective when card receives SEND_IF_COND									
		command.									
A ON 4D 44		Sends request to switch to 1.8V signaling (S18R).									
ACMD41	SD_SEND_OP_COND	Reserved bit shall be set to '0'. CCS bit is assigned to									
		OCR[30].									
		XPC controls the maximum current in the default speed									
		mode of SDXC card. XPC=0 means 100mA (max.) but									
		speed class is not supported. XPC=1 means 150mA									
		(max.) and speed class is supported.									
ACMD40	SET CLD CARD DETECT	Connect[1]/Disconnect[0] the 50 Kohm pull-up resistor on									
ACMD42	SET_CLR_CARD_DETECT	CD/DAT3 (pin 1) of the card.									
ACMD43-49	Reserved for SD security applications										
ACMD50	Reserved										
ACMD51	SEND_SCR	Reads the SD Configuration Register (SCR).									
ACMD52-54	Reserved for Security Specificatio	n									
ACMD55	Not exist Equivalent to CMD55.										
ACMD56-59	Reserved for Security Specificatio	n									

7. Part Number Rule

7.1 Old version:

CODE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
CODL	D	S	2	Α	-	0	8	G	Ι	8	1	W	1	В						
	C	Definition																		
	C	ode	1 st (Disk)			Code 9 th ~11 th (Category)												
D : Disk							18	31: In	dust	rial S	SD Ca	ırd								
Code	2 nd	~ 4	th (F	orm	Fact	tor)		Code 12 th (Operation Temperature)												
S2A: Ind	ustri	al SE	Car	d			С	C: Standard Grade (0°C~ +70°C)												
Co	de 6	th ∼	8 th (Сара	acity	')	W	W: Industrial Grade (-40°C∼ +85°C)												
128: 128	вмв,	256:	256	MB, 5	512:	512M	В	Code 13 th (Internal control)												
01G: 1G	1	1~10: PCB version																		
08G: 8GB, 16G: 16GB, 32G: 32GB									Code 14 th (Flash Type)											
	В	B: Toshiba SLC																		

7.2 New version

7.2 NE	***	<u> </u>	<u> </u>																		
CODE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
CODL	D	E	S	D	C	-	0	1	G	Ι	8	1	Α	C	1	S	В	-	X	X	X
	Definition																				
	Cod	de 1	st ([Disk	()			Code 13 th (Flash Mode)													
D : Disk								A: A	syn	: Fla	sh										
Code 2	2 nd ^	• 5 ^{tl}	¹ (F	orm	Fac	tor)				Cod	de 1	4 th ((Op	erat	ion	Ten	nper	atu	re)		
ESDC: Inc	dusti	rial S	SD C	Card				C: S	Stand	dard	Gra	de (0°C^	+7	0°C))					
Cod	e 7 ^{tl}	h ~9	th (Сара	acit	y)		W: 1	indu	stria	l Gr	ade	(-40	°C~	+85	5°C)					
512: 512	ΜВ		01	G: 1	GB			Code 15 th (Internal control)													
02G: 2GB	,		04	G: 4	GB			A~Z: BGA PCB version , 1:TSOP PCB version													
08G: 8GB	,		16	G: 1	6GB			Code 16 th (Channel of data transfer)													
32G: 32G	В		64	G: 6	4GB			S: Single Channel													
A28: 128	GB							D: Dual Channels													
							Q:Quad Channels														
Code 10t	Code 10th ~12th (Controller)						Code 17 th (Flash Type)														
I81: Indu	stria	I SD	Car	rd				B: Toshiba SLC													
							Code 19 th ~21 th (Customized Code)														