innodisk

U.2SSD

4IG2-P Series

Customer:
Customer
Part
Number:
Innodisk
Part
Number:
Innodisk
Model Name:
Date:

Innodisk	Customer
Approver	Approver

Total Solution For Industrial Flash Storage

Features:

- PCIe Gen. 4 x 4, NVMe SSD
- Kioxia 3D TLC NAND
- iPower Guard
- iData Guard
- Dynamic Thermal Throttling
- Support Ultra iSLC technology
- 256-bit AES hardware-based encryption
- Support TCG Opal Function

Power Requirements:

Input Voltage:	+12 DC +- 5%
Max Operating Wattage (R/W):	11.1W
Idle Wattage:	2.9W

Reliability:

Capacity	TBW (Client)	DWPD
160GB	8,897	33.50
320GB	16,815	31.65
640GB	35,889	33.78
1.28TB	92,008	43.29

Data Retention	1 Year
Warranty	5 Years

1 year data retention is at NAND life end.

For warranty details, please refer to:

https://www.innodisk.com/en/support_and_service/warranty

Performance:

- Sequential Read up to 6,950 MB/s
- Sequential Write up to 5,050 MB/s

Table of contents

1.1 INTRODUCTION OF INNODISK U.2 SSD 4IG2-P 8 1.2 PRODUCT VIEW AND MODELS 8 1.3 PCIE INTERFACE 9 2. PRODUCT SPECIFICATIONS 10 2.1 CAPACITY AND DEVICE PARAMETERS 10 2.2 PERFORMANCE 10 2.3 LEACTRICAL SPECIFICATIONS 11 2.4.1 Temperature Requirement. 11 2.4.2 Houridity 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBLITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABLITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3.1 HEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 <th>1. PRODUCT OVERVIEW</th> <th>8</th>	1. PRODUCT OVERVIEW	8
1.3 PCIE INTERFACE 9 2. PRODUCT SPECIFICATIONS 10 2.1 CAPACITY AND DEVICE PARAMETERS 10 2.2 PERFORMANCE 10 2.3 ELECTRICAL SPECIFICATIONS 11 2.3.1 Power Requirement 11 2.3.2 Power Consumption 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 <th>1.1 INTRODUCTION OF INNODISK U.2 SSD 4IG2-P</th> <th>8</th>	1.1 INTRODUCTION OF INNODISK U.2 SSD 4IG2-P	8
2. PRODUCT SPECIFICATIONS 10 2.1 CAPACITY AND DEVICE PARAMETERS 10 2.2 PERFORMANCE 10 2.3 Electrical SPECIFICATIONS 11 2.3.1 Power Requirement. 11 2.3.2 Power Consumption 11 2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM	1.2 PRODUCT VIEW AND MODELS	8
2.1 CAPACITY AND DEVICE PARAMETERS 10 2.2 PERFORMANCE 10 2.3 ELECTRICAL SPECIFICATIONS 11 2.3 1 Power Requirement 17 2.3 2 Power Consumption 17 2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 17 2.4.2 Humidity 17 2.4.3 Shock and Vibration 17 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 ReLIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 </td <td>1.3 PCIE INTERFACE</td> <td>9</td>	1.3 PCIE INTERFACE	9
2.2 PERFORMANCE 10 2.3 ELECTRICAL SPECIFICATIONS 11 2.3.1 Power Requirement 11 2.3.2 Power Consumption 11 2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3.1 OVERVIEW 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 Bad BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19	2. PRODUCT SPECIFICATIONS	10
2.3 ELECTRICAL SPECIFICATIONS. 11 2.3.1 Power Requirement. 11 2.3.2 Power Consumption 11 2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMELY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3.1 OVERVIEW 17 3.2 POLE GEN. 4X4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19 <td>2.1 CAPACITY AND DEVICE PARAMETERS</td> <td>10</td>	2.1 CAPACITY AND DEVICE PARAMETERS	10
2.3.1 Power Requirement 11 2.3.2 Power Consumption 11 2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3.1 OVERVIEW 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19	2.2 PERFORMANCE	
2.3.2 Power Consumption 11 2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3.1 OVERVIEW 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION / TRIM 18 3.8 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19	2.3 ELECTRICAL SPECIFICATIONS	
2.4 ENVIRONMENTAL SPECIFICATIONS 11 2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4X4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.3.1 Power Requirement	
2.4.1 Temperature Ranges 11 2.4.2 Humidity 11 2.4.3 Shock and Vibration 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.3.2 Power Consumption	
2.4.2 Humidity. 11 2.4.3 Shock and Vibration 11 2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4X4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19	2.4 Environmental Specifications	
2.4.3 Shock and Vibration 11 2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4X4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19	2.4.1 Temperature Ranges	
2.4.4 Mean Time between Failures (MTBF) 12 2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19	2.4.2 Humidity	
2.5 CE AND FCC COMPATIBILITY 12 2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19	2.4.3 Shock and Vibration	
2.6 ROHS COMPLIANCE 12 2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19	2.4.4 Mean Time between Failures (MTBF)	
2.7 RELIABILITY 12 2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19	2.5 CE AND FCC COMPATIBILITY	
2.8 TRANSFER MODE 13 2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.6 RoHS Compliance	
2.9 PIN ASSIGNMENT 14 2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4X4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.7 RELIABILITY	
2.10 MECHANICAL DIMENSIONS 16 2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 19 3.9 THERMAL MANAGEMENT 19 3.10 IPOWER GUARD 19	2.8 TRANSFER MODE	13
2.11 ASSEMBLY WEIGHT 16 2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY. 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW. 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.9 PIN ASSIGNMENT	14
2.12 SEEK TIME 16 2.13 NAND FLASH MEMORY 16 3. THEORY OF OPERATION 17 3.1 OVERVIEW 17 3.2 PCIE GEN. 4x4 CONTROLLER 17 3.3 ERROR DETECTION AND CORRECTION 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.10 MECHANICAL DIMENSIONS	
2.13 NAND FLASH MEMORY.163. THEORY OF OPERATION.173.1 OVERVIEW.173.2 PCIE GEN. 4x4 CONTROLLER.173.3 ERROR DETECTION AND CORRECTION.183.4 WEAR-LEVELING.183.5 BAD BLOCKS MANAGEMENT183.6 IDATA GUARD.183.7 GARBAGE COLLECTION/TRIM183.8 THERMAL MANAGEMENT193.9 THERMAL THROTTLING193.10 IPOWER GUARD.19	2.11 ASSEMBLY WEIGHT	
3. THEORY OF OPERATION 17 3.1 OVERVIEW. 17 3.2 PCIE GEN. 4x4 CONTROLLER. 17 3.3 ERROR DETECTION AND CORRECTION. 18 3.4 WEAR-LEVELING 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.12 SEEK TIME	
3.1 OVERVIEW. 17 3.2 PCIE GEN. 4x4 CONTROLLER. 17 3.3 ERROR DETECTION AND CORRECTION. 18 3.4 WEAR-LEVELING. 18 3.5 BAD BLOCKS MANAGEMENT 18 3.6 IDATA GUARD. 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	2.13 NAND FLASH MEMORY	
3.2 PCIE GEN. 4x4 CONTROLLER173.3 ERROR DETECTION AND CORRECTION183.4 WEAR-LEVELING183.5 BAD BLOCKS MANAGEMENT183.6 IDATA GUARD183.7 GARBAGE COLLECTION/TRIM183.8 THERMAL MANAGEMENT193.9 THERMAL THROTTLING193.10 IPOWER GUARD19	3. THEORY OF OPERATION	17
3.3 ERROR DETECTION AND CORRECTION.183.4 WEAR-LEVELING183.5 BAD BLOCKS MANAGEMENT183.6 IDATA GUARD183.7 GARBAGE COLLECTION/TRIM183.8 THERMAL MANAGEMENT193.9 THERMAL THROTTLING193.10 IPOWER GUARD19	3.1 Overview	17
3.4 WEAR-LEVELING183.5 BAD BLOCKS MANAGEMENT183.6 IDATA GUARD183.7 GARBAGE COLLECTION/TRIM183.8 THERMAL MANAGEMENT193.9 THERMAL THROTTLING193.10 IPOWER GUARD19	3.2 PCIE GEN. 4x4 CONTROLLER	17
3.5 BAD BLOCKS MANAGEMENT183.6 IDATA GUARD183.7 GARBAGE COLLECTION/TRIM183.8 THERMAL MANAGEMENT193.9 THERMAL THROTTLING193.10 IPOWER GUARD19	3.3 ERROR DETECTION AND CORRECTION	
3.6 IDATA GUARD 18 3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	3.4 WEAR-LEVELING	
3.7 GARBAGE COLLECTION/TRIM 18 3.8 THERMAL MANAGEMENT 19 3.9 THERMAL THROTTLING 19 3.10 IPOWER GUARD 19	3.5 BAD BLOCKS MANAGEMENT	
3.8 THERMAL MANAGEMENT	3.6 IDATA GUARD	
3.9 THERMAL THROTTLING	3.7 GARBAGE COLLECTION/TRIM	
3.10 IPower Guard	3.8 THERMAL MANAGEMENT	19
	3.9 THERMAL THROTTLING	19
3.11 DIE RAID	3.10 IPower Guard	19
	3.11 DIE RAID	19

3.12 TCG OPAL	19
4. INSTALLATION REQUIREMENTS	20
4.1 U.2 SSD 4IG2-P PIN DIRECTIONS	20
4.2 ELECTRICAL CONNECTIONS FOR U.2 SSD 4IG2-P	21
4.3 DEVICE DRIVE	21
5. SMART / HEALTH INFORMATION	22
5.1 GET LOG PAGE (LOG IDENTIFIER 02H)	22

REVISION HISTORY

Revision	Description	Date
V1.0	First release	Mar., 2025
V1.1	Add Standard temperature information	May., 2025
V1.2	Revise P/E cycle	Jun., 2025

List of Tables

TABLE 1: DEVICE PARAMETERS	10
TABLE 2: PERFORMANCE - 112 LAYERS 3D TLC.	10
TABLE 3: INNODISK U.2 SSD 4IG2-P POWER REQUIREMENT	11
TABLE 4: Power Consumption	11
TABLE 5: TEMPERATURE RANGE FOR U.2 SSD 4IG2-P	11
TABLE 6: SHOCK/VIBRATION TESTING FOR U.2 SSD 4IG2-P	11
TABLE 7: U.2 SSD 4IG2-P MTBF	12
TABLE 8: U.2 SSD 4IG2-P TBW	12
TABLE 9: INNODISK U.2 SSD 4IG2-P PIN ASSIGNMENT	14
TABLE 10: INNODISK U.2 SSD 4IG2-P LED INDICATOR	16
TABLE 11: GET LOG PAGE - SMART / HEALTH INFORMATION LOG	22

List of Figures

FIGURE 1: INNODISK U.2 SSD 4IG2-P	8
FIGURE 2: INNODISK U.2 SSD 4IG2-P	16
FIGURE 3: INNODISK U.2 SSD 4IG2-P BLOCK DIAGRAM	17
FIGURE 4: DEVICE SIGNAL SEGMENT POWER SEGMENT	20
FIGURE 5: SIGNAL SEGMENT AND POWER SEGMENT (HOST/CABLE SIDE)	21

1. Product Overview

1.1 Introduction of Innodisk U.2 SSD 4IG2-P

Innodisk M.2 (P80) 4IG2-P is Ultra iSLC series which is designed to outdo the endurance, performance and reliability of 3D TLC-based solutions. Through the use of flash management algorithms, iSLC improves SSD endurance up to 100,000 times. In addition, iSLC improves the performance of solid state drives, with similar write performance of SLC-based solutions.

Innodisk U.2 SSD 4IG2-P is an NVM Express SSD designed as PCIe SFF-8639 module with PCIe interface and 3D TLC NAND Flash. U.2 SSD 4IG2-P supports PCIe Gen. 4x4, and it is compliant with NVMe 1.4 providing excellent performance. With sophisticated error detection and correction (ECC) functions, the module can ensure full End-to-end Data Path Protection that secures the data transmission between host system and NAND Flash.

Innodisk U.2 SSD 4IG2-P provides ultra-speed and high IOPS and offers maximum capacity up to 1.28TB, making the SSD optimal for server and heavy data workload applications.

Innodisk U.2 SSD 4IG2-P is designed with AES engine, which is built-in the controller. When controller receives the data package from host, AES engine encrypts the data package and save the encrypted data into NAND flash. Thus, unauthorized personal has no access to decrypt the data in NAND flash.

CAUTION TRIM must be enabled.

TRIM enables SSD's controller to skip invalid data instead of moving. It can free up significant amount of resources, extends the lifespan of SSD by reducing erase, and write cycles on the SSD. Innodisk's handling of garbage collection along with TRIM command improves write performance on SSDs.

1.2 Product View and Models

Innodisk U.2 SSD 4IG2-P is available in follow capacities within 3D TLC flash ICs.

U.2 SSD 4IG2-P 160GB U.2 SSD 4IG2-P 320GB U.2 SSD 4IG2-P 640GB U.2 SSD 4IG2-P 1.28TB

Figure 1: Innodisk U.2 SSD 4IG2-P

1.3 PCIe Interface

Innodisk U.2 SSD 4IG2-P supports PCIe Gen IV interface and compliant with NVMe 1.4. U.2 SSD 4IG2-P can work under PCIe Gen. 1, Gen. 2, Gen. 3, & Gen. 4.

Most of operating system includes NVMe in-box driver now. For more information about the driver support in each OS, please visit <u>https://nvmexpress.org/drivers/</u>.

2. Product Specifications

2.1 Capacity and Device Parameters

U.2 SSD 4IG2-P device parameters are shown in Table 1.

Capacity	LBA	User Capacity(MB)
160GB	312581808	152627
320GB	625142448	305245
640GB	1250263728	610480
1.28TB	2500506288	1220950

Table 1: Device parameters

2.2 Performance

Burst Transfer Rate: 8 GB/s

Table 2: Performance - 112 layers 3D TLC					
Capacity	Unit	160GB	320GB	640GB	1.28TB
Sequential**			6 050	6 6 5 0	6 6 5 0
Read (Q8T1)	MB/s	5,950	6,950	6,650	6,650
Sequential**		2 200	4 050	4 050	
Write (Q8T1)		2,300	4,050	4,950	5,050
4KB Random**		404.000	001 000	000 000	002.000
Read (Q32T16)	IOPS	494,000	901,000	909,000	902,000
4KB Random**		507 000	722 000	700.000	700.000
Write (Q32T16)		597,000	733,000	790,000	799,000

Table 2: Performance - 112 layers 3D TLC

Note:** Performance results are based on CrystalDiskMark 8.0.1 with file size 1000MB. Unit of 4KB items is I.O.P.S. Performance may be different because ST and WT adopt different thermal solutions.

Performance is affected by thermal throttling if device temperatures is over 75C.

2.3 Electrical Specifications

2.3.1 Power Requirement

Table 3: Innodisk U.2 SSD 4IG2-P Power Requirement

Item	Symbol	Rating	Unit
Input voltage	VIN	+12 DC +- 5%	V

2.3.2 Power Consumption

Table 4: Power Consumption		
Mode Power Consumption (W)		
Read	10.0	
Write	11.1	
Idle	2.9	
Power-on peak	11.3	

* Target: U.2 SSD 4IG2-P

Note: Current results may vary depending on system components and power circuit design. Please refer to the test report for other capacities

2.4 Environmental Specifications

2.4.1 Temperature Ranges

Table 5: Temperature range for U.2 SSD 4IG2-P

Temperature Range	
Operating	Standard Grade: 0°C to +70°C
	Industrial Grade: -40°C ~ +85°C
Storage	-40°C ~ +85°C

2.4.2 Humidity

Relative Humidity: 10-95%, non-condensing

2.4.3 Shock and Vibration

Table 6: Shock/Vibration Testing for U.2 SSD 4IG2-P

Reliability	Test Conditions	Reference Standards
Vibration	7 Hz to 2K Hz, 20G, 3 axes	IEC 60068-2-6
Mechanical Shock	Duration: 0.5ms, 1500 G, 3 axes	IEC 60068-2-27

2.4.4 Mean Time between Failures (MTBF)

Table 7 summarizes the MTBF prediction results for various U.2 SSD 4IG2-P configurations. The analysis was performed using a RAM Commander[™] failure rate prediction.

- **Failure Rate**: The total number of failures within an item population, divided by the total number of life units expended by that population, during a particular measurement interval under stated condition.
- **Mean Time between Failures (MTBF)**: A basic measure of reliability for repairable items: The mean number of life units during which all parts of the item perform within their specified limits, during a particular measurement interval under stated conditions.

Table 7: U.2 SSD 4IG2-P MTBF

Product	Condition	MTBF (Hours)
Innodisk U.2 SSD 4IG2-P	Telcordia SR-332 GB, 25°C	>3,000,000

2.5 CE and FCC Compatibility

U.2 SSD 4IG2-P conforms to CE and FCC requirements.

2.6 RoHS Compliance

U.2 SSD 4IG2-P is fully compliant with RoHS directive.

2.7 Reliability

Parameter	Value	
Flash endurance	100,000 P/E cycles	
Error Correct Code	Support (LDPC)	
Data Retention	Under 40°C: 1 Year at NAND Life End	
TBW* (Total Bytes Written) Unit: TB		
Capacity	Sequential workload	Client workload
160GB	14,204	8,897
320GB	28,409	16,815
640GB	56,818	35,889
1.28TB	113,636	92,008
* Note:		
1. Sequential: Mainly	sequential write are estimated by Passl	Mark Burnin Test 8.1 pro.

 Client: Follow JESD218 Test method and JESD219A Workload, tested by ULINK. (The capacity lower than 64GB client workload is not specified in JEDEC219A, the values are estimated.)

3. Based on out-of-box performance.

2.8 Transfer Mode

U.2 SSD 4IG2-P support following transfer mode:

PCIe Gen. 4: 8GB/s

- PCIe Gen. 3: 4GB/s
- PCIe Gen. 2: 2GB/s
- PCIe Gen. 1: 1GB/s

innodisk

2.9 Pin Assignment

Innodisk U.2 SSD 4IG2-P follows standard SFF-8639 spec as below. Mechanical details are documented in SFF-8639: Multifunction 6X Unshielded Connector.

Pin	Mate	Name
P1	3rd	WAKE#
P2	3rd	-
P3	2nd	PWRDIS
P4	1st	IfDet#
P5	2nd	Ground
P6	2nd	Ground
P7	2nd	-
P8	3rd	-
P9	3rd	-
P10	2nd	-
P11	3rd	ACTIVITY#
P12	1st	Ground
P13	2nd	+12V Precharge
P14	3rd	+12V
P15	3rd	+12V
S1	2nd	Ground
S2	3rd	-
S3	3rd	-
S4	2nd	Ground
S5	3rd	-
S6	3rd	-
S7	2nd	Ground
S8	2nd	Ground
S9	3rd	-
S10	3rd	-
S11	2nd	Ground
S12	3rd	-
S13	3rd	-
S14	2nd	Ground
S15	3rd	-
S16	2nd	Ground
S17	3rd	PETp1

Table 9: Innodisk U.2 SSD 4IG2-P Pin Assignment

Pin	Mate	Name
S18	3rd	PETn1
S19	2nd	Ground
S20	3rd	PERn1
S21	3rd	PERp1
S22	2nd	Ground
S23	3rd	PETp2
S24	3rd	PETn2
S25	2nd	Ground
S26	3rd	PERn2
S27	3rd	PERp2
S28	2nd	Ground
E1	3rd	-
E2	3rd	-
E3	3rd	-
E4	3rd	CLKREQ#
E5	3rd	PERST#
E6	3rd	-
E7	3rd	RefClk0+
E8	3rd	RefClk0-
E9	2nd	Ground
E10	3rd	PETp0
E11	3rd	PETn0
E12	2nd	Ground
E13	3rd	PERn0
E14	3rd	PERp0
E15	2nd	Ground
E16	3rd	-
E17	3rd	РЕТр3
E18	3rd	PETn3
E19	2nd	Ground
E20	3rd	PERn3
E21	3rd	PERp3
E22	2nd	Ground
E23	3rd	-
E24	3rd	-
E25	3rd	-

Table 10: Innodisk U.2 SSD 4IG2-P LED indicator

LED Color	Function
Crean	Power on
Green	Access

2.10 Mechanical Dimensions

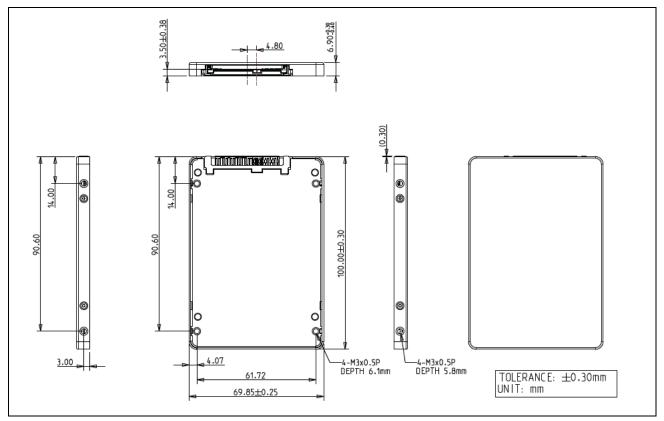


Figure 2: Innodisk U.2 SSD 4IG2-P

2.11 Assembly Weight

An Innodisk U.2 SSD 4IG2-P within NAND flash ICs, 120GB's weight is 14 grams approximately.

2.12 Seek Time

Innodisk U.2 SSD 4IG2-P is not a magnetic rotating design. There is no seek or rotational latency required.

2.13 NAND Flash Memory

Innodisk U.2 SSD 4IG2-P uses 3D TLC NAND flash memory, which is non-volatility, high reliability and high speed memory storage.

3. Theory of Operation

3.1 Overview

Figure 3 shows the operation of Innodisk U.2 SSD 4IG2-P from the system level, including the major hardware blocks.

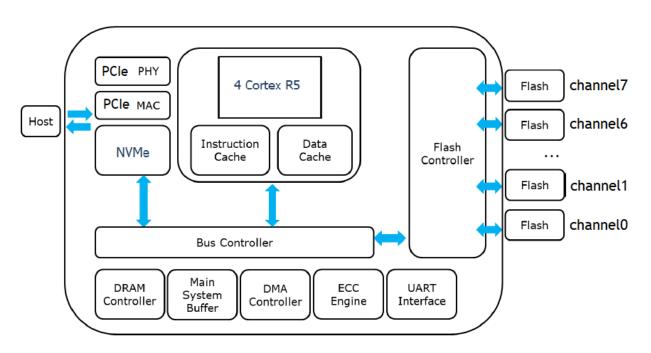


Figure 3: Innodisk U.2 SSD 4IG2-P Block Diagram

Innodisk U.2 SSD 4IG2-P integrates a PCIe Gen. 4x4 controller and NAND flash memories. Communication with the host occurs through the host interface, using the standard NVM protocol. Communication with the flash device(s) occurs through the flash interface.

3.2 PCIe Gen. 4x4 Controller

Innodisk U.2 SSD 4IG2-P is a PCIe Gen. 4x4 controller is compliant with NVMe 1.4, up to 32.0Gbps transfer speed. Also it is compliant with PCIe Gen. 1, Gen. 2, Gen. 3, and Gen. 4 specification. The controller supports up to 8 channels for flash interface.

3.3 Error Detection and Correction

Innodisk U.2 SSD 4IG2-P is designed with hardware LDPC ECC engine with hard-decision and soft-decision decoding. Low-density parity-check (LDPC) codes have excellent error correcting performance close to the Shannon limit when decoded with the belief-propagation (BP) algorithm using soft-decision information.

3.4 Wear-Leveling

Flash memory can be erased within a limited number of times. This number is called the **erase cycle limit** or **write endurance limit** and is defined by the flash array vendor. The erase cycle limit applies to each individual erase block in the flash device.

Innodisk U.2 SSD 4IG2-P uses a combination of two types of wear leveling- dynamic and static wear leveling- to distribute write cycling across an SSD and balance erase count of each block, thereby extending flash lifetime.

3.5 Bad Blocks Management

Bad Blocks are blocks that contain one or more invalid bits whose reliability are not guaranteed. The Bad Blocks may be presented while the SSD is shipped, or may develop during the life time of the SSD. When the Bad Blocks is detected, it will be flagged, and not be used anymore. The SSD implement Bad Blocks management, Bad Blocks replacement, Error Correct Code to avoid data error occurred. The functions will be enabled automatically to transfer data from Bad Blocks to spare blocks, and correct error bit.

3.6 iData Guard

Innodisk's iData Guard is a comprehensive data protection mechanism that functions before and after a sudden power outage to the SSD. Low-power detection terminates data writing before an abnormal power-off, while table-remapping after power-on deletes corrupt data and maintains data integrity. Innodisk's iData Guard provides effective power cycling management, preventing data stored in flash from degrading with use.

3.7 Garbage Collection/TRIM

Garbage collection and TRIM technology is used to maintain data consistency and perform continual data cleansing on SSDs. It runs as a background process, freeing up valuable controller resources while sorting good data into available blocks, and deleting bad blocks. It also significantly reduces write operations to the drive, thereby increasing the SSD's speed and lifespan.

3.8 Thermal Management

U.2 SSD 4IG2-P has built-in thermal sensor which can detect environment temperature of SSD. In the meantime, firmware will monitor the thermal sensor to prevent any failure of overheating. During extreme temperature, firmware will adjust the data transfer behavior to maintain the SSD's reliable operation.

3.9 Thermal Throttling

Thermal throttling is a protective mechanism designed to safeguard components from potential damage caused by excessive temperatures. When an SSD approaches a critical temperature threshold, Innodisk firmware activates the thermal throttling mechanism to regulate the SSD's temperature. Thermal throttling is crucial for SSDs since it prevents drive damage, which could otherwise result in data loss. However, it's worth noting that when thermal throttling is activated, read and write tasks may experience a reduction in speed.

3.10 iPower Guard

iPower Guard technology is a set of preventive measures that protect the SSD in an unstable power supply environment. This comprehensive package comprises safeguards for startup and shutdown to maintain device performance and ensure data integrity.

3.11 Die RAID

Die RAID is a controller function which leveraged user capacity to back up the data in NAND flash. Die RAID supported can ensure the user data in the NAND Flash more consistent in certain scenario. Innodisk U.2 SSD 4IG2-P series is default enable the Die RAID function for the industrial application.

3.12 TCG OPAL

OPAL is a set of specifications for features of data storage devices that enhance security. These specifications are published by the Trusted Computing Group's Storage Work Group. Innodisk 4TG2-P is compliant with TCG OPAL 2.0(*1). The capability of TCG OPAL Security mode allows multiple users with independent access control to read/write/erase independent data areas (LBA ranges). Each locking range adjusts by authenticated authority. Note that by default there is a single "Global Range" that encompasses the whole user data area. In TCG Opal Security Mode, Revert, Revert SP and GenKey command can erase all of data including global range and locking range; in the meantime generate the new encrypted key.

*1. You need to install TCG OPAL software to implement OPAL function, which is supplied by TCG OPAL software developed company

4. Installation Requirements

4.1 U.2 SSD 4IG2-P Pin Directions

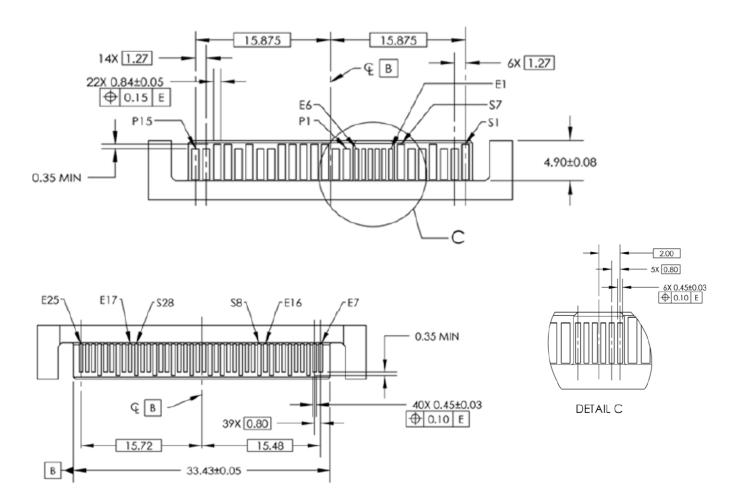


Figure 4: Device Signal Segment Power Segment

V1.2

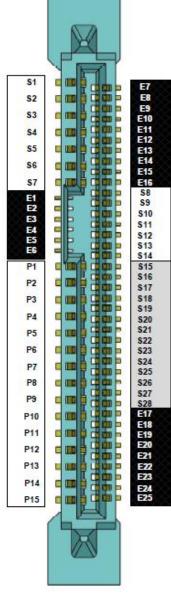


Figure 5: Signal Segment and Power Segment (Host/cable side)

4.2 Electrical Connections for U.2 SSD 4IG2-P

U.2 SSD 4IG2-P follows standard SFF-8639 spec, Mechanical details are documented in SFF-8639:Multifunction 6X Unshielded Connector, it is a total of 68 contacts, not all contacts may be utilized.U.2 SSD 4IG2-P only support PCIe interface, see more details in *2.9 Pin Assignment.*

4.3 Device Drive

U.2 SSD 4IG2-P is compliant with NVMe 1.4. Both Operation System and BIOS should include NVMe driver to compatible with NVMe device. Nowadays, most of OS includes NVMe in-box driver now. For more information about the driver support in each OS, please visit the website <u>https://nvmexpress.org/drivers/</u>. For BIOS NVMe driver support please contact with motherboard manufacturers.

5. SMART / Health Information

This log page is used to provide SMART and general health information. The information provided is over the life of the controller and is retained across power cycles. More details about Set Features command; please refer to NVM Express 1.3

5.1 Get Log Page (Log Identifier 02h)

Innodisk 4IG2-P series SMART / Health Information Log are listed in following table.

Bytes	Description			
	Critical Warning: This field indicates critical warnings for the state of the controller. Each			
	bit corresponds to a critical warning type; multiple bits may be set. If a bit is cleared to			
	'0', then that critical warning does not apply. Critical warnings may result in an			
	asynchronous event notification to the host. Bits in this field represent the current			
	associated st	ate and are not persistent.		
	Bit	Definition		
	7:6	Reserved		
	5	If set to '1', then the Persistent Memory Region has become read-only or unreliable.		
	4	If set to '1', then the volatile memory backup device has failed. This field is only valid if the controller has a volatile memory backup solution.		
0	0 3	If set to '1', then all of the media has been placed in read only mode. The controller shall not set this bit to '1' if the read-only condition on the media is a result of a change in the write protection state of a namespace.		
	2	If set to '1', then the NVM subsystem reliability has been degraded due to significant media related errors or any internal error that degrades NVM subsystem reliability.		
	1	If set to '1', then a temperature is: a) greater than or equal to an over temperature threshold; or b) less than or equal to an under temperature threshold.		
	0	If set to '1', then the available spare capacity has fallen below the threshold.		
	Composite Temperature: Contains a value corresponding to a temperature in degrees			
2.1	Kelvin that	represents the current composite temperature of the controller and		
2:1	namespace(s) associated with that controller. The manner in which this value computed is implementation specific and may not represent the actual temperature			

Table 11: Get Log Page – SMART / Health Information Log

innodisl	U.2 SSD 4IG2-P
	any physical point in the NVM subsystem. The value of this field may be used to trigger an asynchronous event.
	Warning and critical overheating composite temperature threshold values are reported by the WCTEMP and CCTEMP fields in the Identify Controller data structure.
3	Available Spare: Contains a normalized percentage (0 to 100%) of the remaining spare capacity available.
4	Available Spare Threshold: When the Available Spare falls below the threshold indicated in this field, an asynchronous event completion may occur. The value is indicated as a normalized percentage (0 to 100%).
5	Percentage Used: Contains a vendor specific estimate of the percentage of NVM subsystem life used based on the actual usage and the manufacturer's prediction of NVM life. A value of 100 indicates that the estimated endurance of the NVM in the NVM subsystem has been consumed, but may not indicate an NVM subsystem failure. The value is allowed to exceed 100. Percentages greater than 254 shall be represented as 255. This value shall be updated once per power-on hour (when the controller is not in a sleep state). Refer to the JEDEC JESD218A standard for SSD device life and endurance measurement techniques.
31:6	Reserved
47:32	Data Units Read: Contains the number of 512 byte data units the host has read from the controller; this value does not include metadata. This value is reported in thousands (i.e., a value of 1 corresponds to 1000 units of 512 bytes read) and is rounded up. When the LBA size is a value other than 512 bytes, the controller shall convert the amount of data read to 512 byte units. For the NVM command set, logical blocks read as part of Compare and Read operations shall be included in this value.
63:48	 Data Units Written: Contains the number of 512 byte data units the host has written to the controller; this value does not include metadata. This value is reported in thousands (i.e., a value of 1 corresponds to 1000 units of 512 bytes written) and is rounded up. When the LBA size is a value other than 512 bytes, the controller shall convert the amount of data written to 512 byte units. For the NVM command set, logical blocks written as part of Write operations shall be included in this value. Write Uncorrectable commands shall not impact this value.
79:64	Host Read Commands: Contains the number of read commands completed by the controller. For the NVM command set, this is the number of Compare and Read commands.
95:80	Host Write Commands: Contains the number of write commands completed by the controller.For the NVM command set, this is the number of Write commands.

innodisk	U.2 SSD 4IG2-P								
	Controller Busy Time: Contains the amount of time the controller is busy with I/O								
111:96	commands. The controller is busy when there is a command outstanding to an I/O								
	Queue (specifically, a command was issued via an I/O Submission Queue Tail doorbell								
	write and the corresponding completion queue entry has not been posted yet to the								
	associated I/O Completion Queue). This value is reported in minutes.								
127:112	Power Cycles: Contains the number of power cycles.								
143:128	Power On Hours: Contains the number of power-on hours. This may not include time								
145.120	that the controller was powered and in a non-operational power state.								
	Unsafe Shutdowns: Contains the number of unsafe shutdowns. This count is								
159:144	incremented when a shutdown notification (CC.SHN) is not received prior to loss of power.								
	Media and Data Integrity Errors: Contains the number of occurrences where the								
175:160	controller detected an unrecovered data integrity error. Errors such as uncorrectable								
	ECC, CRC checksum failure, or LBA tag mismatch are included in this field.								
	Number of Error Information Log Entries: Contains the number of Error Information log								
191:176	entries over the life of the controller.								
	Warning Composite Temperature Time: Contains the amount of time in minutes that								
	the controller is operational and the Composite Temperature is greater than or equal to								
	the Warning Composite Temperature Threshold (WCTEMP) field and less than the								
195:192	Critical Composite Temperature Threshold (CCTEMP) field in the Identify Controller data								
	structure.								
	If the value of the WCTEMP or CCTEMP field is 0h, then this field is always cleared to 0h								
	regardless of the Composite Temperature value.								
	Critical Composite Temperature Time: Contains the amount of time in minutes that the								
	controller is operational and the Composite Temperature is greater than the Critical								
199:196	Composite Temperature Threshold (CCTEMP) field in the Identify Controller data								
	structure.								
	If the value of the CCTEMP field is 0h, then this field is always cleared to 0h regardless								
	of the Composite Temperature value.								
201:200	Temperature Sensor 1: Controller's Tj temperature								
203:202	Temperature Sensor 2: Flash package's Tj temperature (Channel #0 CE #0). This Flash								
	package is located the closet to the controller IC on M.2 family.								
205:204	Temperature Sensor 3: Flash package's Tj temperature (Channel #0 CE #0).								
	This Flash package is located the closet to the controller IC on M.2 family.								
207:206	Temperature Sensor 4: Flash package's Tj temperature (Channel #7 CE #0).								
209:208	Temperature Sensor 5: Flash Tj max temperature from Channel #0 to Channel #3 Flash								
	packages.								
211:210	Temperature Sensor 6: Flash Tj max temperature from Channel #4 to Channel #7 Flash								
	packages.								

innodisk	U.2 SSD 4IG2-P
212-212	Temperature Sensor 7: Flash Tj minimum temperature from Channel #0 to Channel #3
213:212	Flash packages.
215.214	Temperature Sensor 8: Flash Tj minimum temperature from Channel #4 to Channel #7
215:214	Flash packages.
,	Thermal Management Temperature 1 Transition Count: Contains the number of times
	the controller transitioned to lower power active power states or performed vendor
	specific thermal management actions while minimizing the impact on performance in
219:216	order to attempt to reduce the Composite Temperature because of the host controlled
219:210	thermal management feature (refer to section 8.4.5) (i.e., the Composite Temperature
	rose above the Thermal Management Temperature 1.) This counter shall not wrap once
	it reaches its maximum value. A value of zero, indicates that this transition has never
	occurred or this field is not implemented.
	Thermal Management Temperature 2 Transition Count: Contains the number of times
	the controller transitioned to lower power active power states or performed vendor
	specific thermal management actions regardless of the impact on performance (e.g.,
223:220	heavy throttling) in order to attempt to reduce the Composite Temperature because of
225.220	the host controlled thermal management feature (refer to section 8.4.5) (i.e., the
	Composite Temperature rose above the Thermal Management Temperature 2.) This
	counter shall not wrap once it reaches its maximum value. A value of zero, indicates that
	this transition has never occurred or this field is not implemented.
	Total Time For Thermal Management Temperature 1: Contains the number of seconds
	that the controller had transitioned to lower power active power states or performed
	vendor specific thermal management actions while minimizing the impact on
227:224	performance in order to attempt to reduce the Composite Temperature because of the
	host controlled thermal management feature (refer to section 8.4.5). This counter shall
	not wrap once it reaches its maximum value. A value of zero, indicates that this
	transition has never occurred or this field is not implemented.
	Total Time For Thermal Management Temperature 2: Contains the number of seconds
	that the controller had transitioned to lower power active power states or performed
	vendor specific thermal management actions regardless of the impact on performance
231:228	(e.g., heavy throttling) in order to attempt to reduce the Composite Temperature
	because of the host controlled thermal management feature (refer to section 8.4.5).
	This counter shall not wrap once it reaches its maximum value. A value of zero, indicates
	that this transition has never occurred or this field is not implemented.
511:232	Reserved

The innodisk U.2 SSD 4IG2-P series thermal sensor take ambient air temperature as a reference with any airflow condition, and the data can refer to iSMART.

Notes: More detailed health info has been defined by innodisk and will be shown on iSMART V5.3.21 (or later version).

V1.2

6. Part Number Rule

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
CODE	D	Н	E	U	2	1	1	т	2	D	Ρ	2	к	w	A	E	F	-	x	x	x		
Definition																•	•	•		•			
Code 1 st (Disk)												Code 14 th (Operation Temperature)											
D : Disk												C: Standard Grade (0 $^{\circ}$ C ~ +70 $^{\circ}$ C)											
	Ň	W: Industrial Grade (-40 $^\circ$ C ~ +85 $^\circ$ C)																					
		Co	de 2	nd (F	eat	ure s	set)				Code 15 th (Internal control)												
H : iSL	H : iSLC Series												A~Z: BGA PCB version										
	С	ode	3 rd 4	~5 th	(Fo	r <mark>m f</mark> a	acto	r)			Code 16 th (Channel of data transfer)												
EU2: U	.2 S	SD								E	E: Eight Channels												
		Cod	e 7 ^{ti}	^h ∼9	th (C	apa	city)				Code 17 th (Flash Type)												
A60: 1	A60: 160GB D2G: 320GB F4G: 640GB								F	F: Kioxia 3D TLC													
1T2: 1	1T2: 1.28TB																						
	_					-																	
Code 10 th ~12 th (Controller)											Code 18 th (Optional Function)												
DP2: PCIe 4TG2-P with AES+TCG OPAL function								n															
Code 13 th (Flack mode)											Code 19 th ~ 21 st (Customize code)												
Code 13 th (Flash mode) K: 112 Layers 3D TLC											Cod	ie 19	y ∧	21°	· (Cl	ISTO	mize	e coc	ie)				
N. 112 Layers SD TLC																							