MPT-3000V Multi-Purpose In-Vehicle System

User's Manual

Version 1.2 (Sep. 2018)

Copyright

© 2018 IBASE Technology, Inc. All rights reserved.

No part of this publication may be reproduced, copied, stored in a retrieval system, translated into any language or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written consent of IBASE Technology, Inc. (hereinafter referred to as "IBASE").

Disclaimer

IBASE reserves the right to make changes and improvements to the products described in this document without prior notice. Every effort has been made to ensure the information in the document is correct; however, IBASE does not guarantee this document is error-free. IBASE assumes no liability for incidental or consequential damages arising from misapplication or inability to use the product or the information contained herein, nor for any infringements of rights of third parties, which may result from its use.

Trademarks

All the trademarks, registrations and brands mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Compliance

CE

This product has passed CE tests for environmental specifications and limits. This product is in accordance with the directives of the Union European (EU). If users modify and/or install other devices in this equipment, the CE conformity declaration may no longer apply.

FC.

This product has been tested and found to comply with the limits for a Class B device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with manufacturer's instructions, may cause harmful interference to radio communications.

This product holds the official approval as an certified in-vehicle device in accordance with ECE type approval E24.

WEEE

This product must not be disposed of as normal household waste, in accordance with the EU directive of for waste electrical and electronic equipment (WEEE - 2012/19/EU). Instead, it should be disposed of by returning it to a municipal recycling collection point. Check local regulations for disposal of electronic products.

Green IBASE

This product is compliant with the current RoHS restrictions and prohibits use of the following substances in concentrations exceeding 0.1% by weight (1000 ppm) except for cadmium, limited to 0.01% by weight (100 ppm).

- Lead (Pb)
- Mercury (Hg)
- Cadmium (Cd)
- Hexavalent chromium (Cr6+)
- Polybrominated biphenyls (PBB)
- Polybrominated diphenyl ether (PBDE)

iBASE

Important Safety Information

Carefully read the precautions before using the device.

Environmental conditions:

- Lay the device horizontally on a stable and solid surface in case the device may fall, causing serious damage.
- Leave plenty of space around the device and do not block the openings for ventilation. NEVER DROP OR INSERT ANY OBJECTS OF ANY KIND INTO THE VENTILATION OPENINGS.
- Slots and openings on the chassis are for ventilation. Do not block or cover these openings. Make sure you leave plenty of space around the device for ventilation. NEVER INSERT OBJECTS OF ANY KIND INTO THE VENTILATIN OPENINGS.
- Use this product in environments with ambient temperatures between -40°C and 70°C for SSD, and between -20°C and 50°C for HDD.
- DO NOT LEAVE THIS DEVICE IN AN ENVIRONMENT WHERE THE STORAGE TEMPERATURE MAY GO BELOW -40°C OR ABOVE 85°C. This could damage the device. The device must be used in a controlled environment.

Care for your IBASE products:

- Before cleaning the device, turn it off and unplug all cables such as power in case a small amount of electrical current may still flow.
- Use neutral cleaning agents or diluted alcohol to clean the device chassis with a cloth. Then wipe the chassis with a dry cloth.
- Vacuum the dust with a computer vacuum cleaner to prevent the air vent or slots from being clogged.

Attention during use:

- DO NOT connect a DC source to be used as the UPS voltage input. This could damage system. Refer to 2.1.7 Pinout for Power Input & GPIO Connectors for information related to the DC power connectors and UPS battery connector.
- Do not use this product near water.
- Do not spill water or any other liquids on your device.
- Do not place heavy objects on the top of the device.
- Operate this device from the type of power indicated on the marking label. If you
 are not sure of the type of power available, consult your distributor or local
 power company.
- Do not walk on the power cord or allow anything to rest on it.
- If you use an extension cord, make sure that the total ampere rating of the product plugged into the extension cord does not exceed its limits.

Avoid Disassembly

You are not suggested to disassemble, repair or make any modification to the device. Disassembly, modification, or any attempt at repair could generate hazards and cause damage to the device, even bodily injury or property damage, and will void any warranty.

Danger of explosion if internal lithium-ion battery is replaced by an incorrect type. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Warranty Policy

IBASE standard products:

24-month (2-year) warranty from the date of shipment. If the date of shipment cannot be ascertained, the product serial numbers can be used to determine the approximate shipping date.

• 3rd-party parts:

12-month (1-year) warranty from delivery for the 3rd-party parts that are not manufactured by IBASE, such as CPU, memory, HDD, power adapter, panel and touchscreen.

* PRODUCTS, HOWEVER, THAT FAILS DUE TO MISUSE, ACCIDENT, IMPROPER INSTALLATION OR UNAUTHORIZED REPAIR SHALL BE TREATED AS OUT OF WARRANTY AND CUSTOMERS SHALL BE BILLED FOR REPAIR AND SHIPPING CHARGES.

Technical Support & Services

- 1. Visit the IBASE website at www.ibase.com.tw to find the latest information about the product.
- 2. If you need any further assistance from your distributor or sales representative, prepare the following information of your product and elaborate upon the problem.
 - Product model name
 - Product serial number
 - Detailed description of the problem
 - The error messages in text or in screenshots if there is any
 - The arrangement of the peripherals
 - Software in use (such as OS and application software, including the version numbers)
- If repair service is required, you can download the RMA form at http://www.ibase.com.tw/english/Supports/RMAService/. Fill out the form and contact your distributor or sales representative.

iBASE

Table of Contents

Complian	ce	iii
Important	Safety Information	iv
WARNING)	iv
CAUTION		V
Warranty	Policy	V
Technical	Support & Services	V
Chapter 1	General Information	1
1.1	Introduction	2
1.2	Features	
1.3	Packing List	
1.4	Optional Accessories	
1.5	Specifications	
1.6	Overview	
1.7	Dimensions	
1.8	Fuse Dimensions	8
Chapter 2	Hardware Configuration	9
2.1	Essential Installations Before You Begin	10
	2.1.1 Memory Installation	10
	2.1.2 Storage Installation	12
	2.1.3 CFast & Micro-SIM Card Installation	
	2.1.4 Mini-PCIe & M.2 Network Cards Installation	16
	2.1.5 WiFi / 3G / 4G Antenna Installation	
	2.1.6 Mounting Brackets Installation	
	2.1.7 Pinout for Power Input & GPIO Connectors	
2.2	Setting the Jumpers	
	2.2.1 How to Set Jumpers	21
2.3	Jumper & Connector Locations on Motherboard	22
2.4	Jumpers Quick Reference	24
	2.4.1 COM1, COM2 Port RS-232 Selection (JP1, JP2)	24
	2.4.2 ME Register Clearance (JP3)	25
	2.4.3 CMOS Data Clearance (JP4)	25
2.5	Connectors Quick Reference	26

	2.5.1	Digital I/O Port (CN1)	27
	2.5.2	DVI-D Port (CN2)	27
	2.5.3	LAN Port (CN3, CN4)	28
	2.5.4	USB 2.0 Port (CN5, CN15)	28
	2.5.5	Audio Jack (CN6, CN13, CN14)	28
	2.5.6	SATA II Connector (CN7)	29
	2.5.7	CFast Connector (CN9)	29
	2.5.8	USB 3.0 Port (CN10)	29
	2.5.9	SIM Card Slot (CN11, CN12)	
	2.5.10	COM Port Connector (COM1 ~ COM4)	
	2.5.11	SATA HDD Power Connector (J4)	31
	2.5.12	CRT Connector (J5)	31
	2.5.13	M.2 (M2280) SATA Interface (J6)	
	2.5.14	M.2 (E2230) USB2.0 / PCIe (x1) Interface (J7)	32
	2.5.15	DDR3L SO-DIMM Socket (J9, J10)	32
	2.5.16	Future Connector for CAN Module Connection (J11)	
	2.5.17	M.2 (B3042) USB2.0 Interface (J13)	
	2.5.18	Half Mini PCIe USB2.0 Connector (J18)	
	2.5.19	Full Mini PCIe USB2.0 / PCIe (x1) Connector (J19)	34
	2.5.20	Power Module Interface (PCIE1)	
	2.5.21	Digital IO Pull High to +5V Switch (SW1)	
	2.5.22	Reset Button (SW2)	35
Chapter	3 Dri	ver Installation	36
3.1	Introdu	ction	37
3.2	Intel® C	Chipset Software Installation Utility	37
3.3	VGA D	river Installation	39
3.4	HD Aud	dio Driver Installation	40
3.5	LAN Dr	river Installation	41
3.6	Intel® T	rusted Execution Engine Installation	43
3.7	Intel® S	Serial I/O Driver Installation	44
3.8	G-Sens	sor Driver Installation	45
Chapter	4 BIC	OS Setup	47
4.1	Introdu	ction	48
4.2	BIOS S	Setup	48
4.3		ettings	
4.4		ced Settings	
	4.4.1	CSM Configuration	51
	4.4.2	ACPI Settings	
	4.4.3	Digital I/O Configuration	53

iBASE

	4.4.4	Power Board Configuration	54
	4.4.5	Super IO Configuration	55
	4.4.6	Hardware Monitor	56
	4.4.7	CPU Configuration	57
	4.4.8	CPU PPM Configuration	58
	4.4.9	SATA Configuration	59
	4.4.10	USB Configuration	60
4.5	Chipset	t Settings	61
	4.5.1	North Bridge	61
4.6	Security	y Settings	62
4.7	Boot Se	ettings	63
4.8	Save &	Exit Settings	64
Append	ix		65
A.	I/O Por	t Address Map	66
B.	Interrup	ot Request Lines (IRQ)	66
C.	Watcho	dog Timer Configuration	67
D.	Softwar	re Development Kit for WDT.DLL	71
E.	Motherl	board MCU ISP Specifications	77

Chapter 1 General Information

The information provided in this chapter includes:

- Features
- Packing List
- Specifications
- Overview
- Dimensions

1.1 Introduction

The MPT-3000V is vehicle-mounted product series of IBASE embedded computing system. It is a robust, rugged and fanless design with an Intel® Atom $^{\text{TM}}$ E3845 processor and an Intel® I210 Ethernet controller. This product provides high-speed data transmission and reliable connection when subject to shock or vibration. It is able to be operated at the ambient operating temperature ranging from -40 ~ 70 °C if SSD is used, and even from -40 ~ 85 °C for storage.

1.2 Features

- In-vehicle fanless design box PC with e/E mark
- Intel[®] Atom[™] E3845 processor and I210 Ethernet Controller
- Dual RJ45 gigabit Ethernet ports
- Dual SIM slots for WWAN redundancy
- Removable 2.5" drive bay and CFast slot
- Rich I/O interfaces for wireless, SSD, GPS, WWAN and add-on card expansion
- Fully car battery power control
- Wide-range voltage GPIO interface

1.3 Packing List

Your MPT-3000V package should include the items listed below. If any of the items below is missing, contact the distributor or the dealer from whom you purchased the product.

Item	Q'ty	IBASE P/N
MPT-3000V	1	
Mounting Bracket	2	
GPIO Matching Connector (8 pins) (DINKLE EC350VM-08P, 8 pins)	1	C1216EC3508103000P
Thermal Pad (70 x 20 x 5.5 mm) * Longer, for M.2 SSD module card	1	C1401070020055000P
Thermal Pad (20 x 20 x 5.5 mm) * Shorter, for M.2 WiFi module card	1	C1401020020055000P
Round Head Screw (4 for Mounting Bracket, 1 for M.2 network Module Card, 1 for spare)	6	H02306110122001N0P
Flat Head Screw for Mini PCle Card	2	H02203511122000N0P
Screw for SSD / HDD (if not pre-installed)	4	H0230561B710BN000P

1.4 Optional Accessories

IBASE provide optional accessories as follows. Please contact us or your dealer if you need any.

Item	IBASE P/N
Thermal Pad (70 x 20 x 5.5 mm)	C1401070020055000P
Thermal Pad (20 x 20 x 5.5 mm)	C1401020020055000P
RTC Battery	C272113012020B100P
Fuse for MPT-3000V	C2309001151058000P
2.5" MLC SSD (64 GB)	A002SSDSA064G2524P
M.2 MLC SSD (128 GB)	A002SSDM2S128G200P
MLC CFast (8 GB)	A008CFG0080400200P

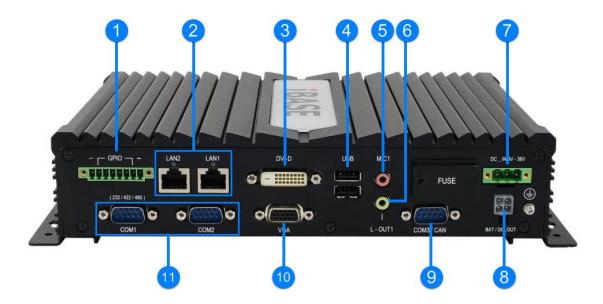
1.5 Specifications

Product Name	MPT-3000V		
	System		
Motherboard	MBT-3001V		
Operating System • Windows 7 / 8.1 (32-bit & 64-bit) • Windows Embedded 8 • Linux (Fedora)			
CPU	Intel® Atom™ E3845 processor (2 MB L2, 1.91 GHz)		
Chipset	Integrated		
Memory	2 x DDR3L-1333 SO-DIMM 2GB, upgradable to 8 GB		
Graphics	Intel® HD graphics Gen. 7 with 4EU Supports DX 11, OGL 3.0, OCL 1.2, OGLES 2.0		
Super I/O	Fintek F81866AD		
Storage	 2.5" drive bay for SSD / HDD M.2 (M) slot for M.2 SATA (NGFF) * M.2 SATA (NGFF) is the storage interface by default. If you use SSD / HDD alternatively, remove the M.2 SATA card installed. Otherwise the SSD / HDD will not be detected. 		
Audio Codec	Realtek ALC662, two channels of input and output		
Power Supply	ply 9~36V with IGN control		
Fuse	Littlefuse® TAC ATO® Style Blade 15A, 58V DC		
RTC Battery	Panasonic BR2032 3V		
BIOS	AMI BIOS		
Watchdog	Watchdog Timer 256 segments, 0, 1, 2255 sec/min		
Chassis	Aluminum, black		
Mounting	Custom mounting rail		
Dimensions (W x H x D)	256 x 55 x 182 mm (10.08" x 2.17" x 7.17")		
Net Weight	2.55 kg (5.62 lb)		
CE (EN 60950-1:2006+A2:2013 / EN55032:2015 / EN55024:2010+A1:2015), FCC Class B, E24			
	I/O Ports		
LAN	2 x RJ45 GbE LAN		
USB	• 1 x USB 3.0 • 3 x USB 2.0		

SSD / HDD	1 x 2.5" drive bay				
SATA	1 x SATA II				
SATA					
Serial	3 x COM ports: COM1: RS-232/422/485 COM2 & COM3: RS-232 only COM3 is optional with CAN.				
Display	 1 x DVI-D, up to 1920 x 1080 1 x VGA, up to 1920 x 1080 				
Digital I/O	6 digital I/O with 24V input tolerance * Define the I/O direction in BIOS > Advanced Settings > Digital IO Configuration. * You can use IBASE's software development kit (SDK) to configure GPIO in the operating system. For further information about the SDK, refer to Appendix D Software Development Kit for WDT.DLL in this manual.				
CFast	1 x CFast connector				
SIM	2 x Micro-SIM card slot				
Audio Jack	2 x Microphone Input 2 x Line-out				
Expansion	 1 x Mini PCle slot (full-sized) with USB 2.0 & PCle 1 x Mini PCle slot (half-sized) with USB2.0 1 x M.2 (M2280) slot with SATA for SSD only (shared with 2.5" drive bay) 1 x M.2 (E2230) slot with PCle & USB for WLAN 1 x M.2 (B3042) slot with PCle & USB for WWAN 				
	Environment				
Temperature	 Operating: SSD: -40 ~ 70 °C (-40 ~ 158 °F) HDD: -20 ~ 50°C (-4 ~ 122 °F) Storage:40 ~ 85 °C (-40 ~ 185 °F) 				
Relative Humidity	10 ~ 95% (non-condensing)				
Vibration Protection	 For SSD: 2.26 grms, 5 ~ 500 Hz (Z-axis) For HDD: 1.04 grms, 5 ~ 500 Hz (Z-axis) 				
Shock Protection	 Operating: 20G, 11 msec (Z-axis) Non-operating: 40G, 11 msec (Z-axis) 				

All specifications are subject to change without prior notice.

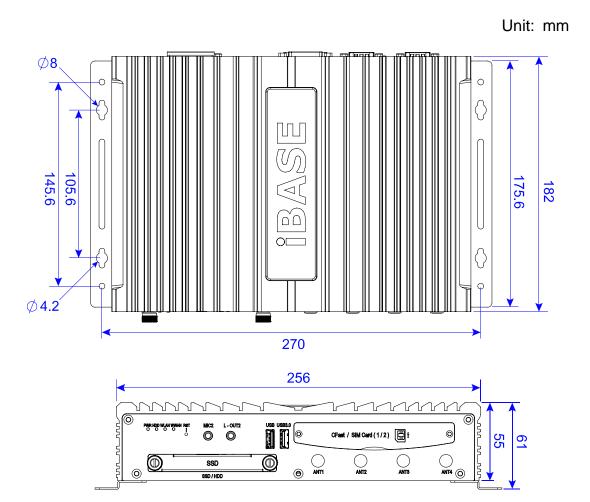
iBASE


1.6 Overview

Front View

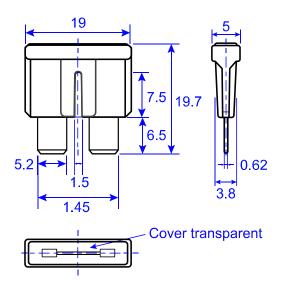
No.	Name	No.	Name
1	LED Indicators	6	USB 3.0 Receptacle
2	Reset Button	7	CFast / SIM Card Slot Door
3	Secondary Microphone Input	8	Antenna Holes
4	Secondary Line-out	9	SSD / HDD Drive Bay
5	USB 2.0 Receptacle		

Rear View



No.	Name	No.	Name
1	GPIO Connector	7	DC Input Connector
2	LAN Ports with LED Indicators	8	UPS Battery / DC 12V Output
3	DVI-D Port	9	COM3 / CAN (Optional)
4	USB 2.0 Port	10	VGA Port
5	First Microphone Input	11	COM1 & COM2 Ports
6	First Line-out		

Oblique View



1.7 Dimensions

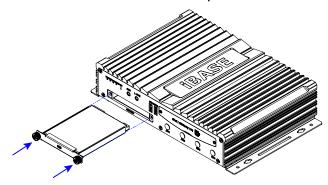
1.8 Fuse Dimensions

Littlefuse® TAC ATO® Style Blade 15A, 58V DC

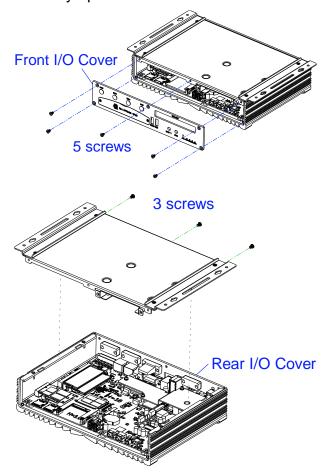
Chapter 2 Hardware Configuration

The information provided in this chapter includes:

- Essential installations before you begin
- Information and locations of connectors

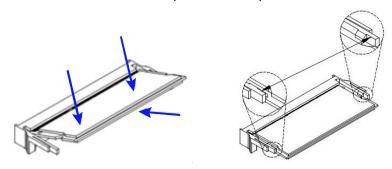


2.1 Essential Installations Before You Begin


2.1.1 Memory Installation

There are two SO-DIMM DDR3L memory slots inside MPT-3000V and the maximum memory supported is 8 GB. If you need to replace or install the modules, perform the following steps.

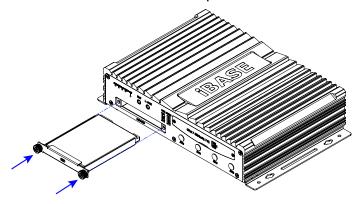
1. Release 2 screws below to pull out the SSD / HDD tray.



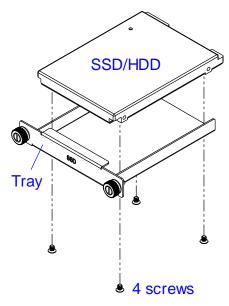
2. Turn your MPT-3000V upside down. Remove 5 screws from the front I/O and take it apart, and also remove 3 screws from the rear I/O cover. Then carefully open the bottom cover.

- 3. Locate the memory slot and align the keys of the memory module with that on the memory slot.
- 4. Insert the module slantwise and gently push the module straight down until the clips of the slot close to hold the module in place when the module touches the bottom of the slot.

To remove the module, press the clips outwards with both hands.

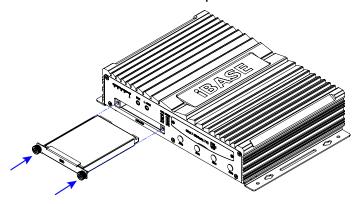

After installation, tighten the 8 screws mentioned in Step 2 to secure the device.

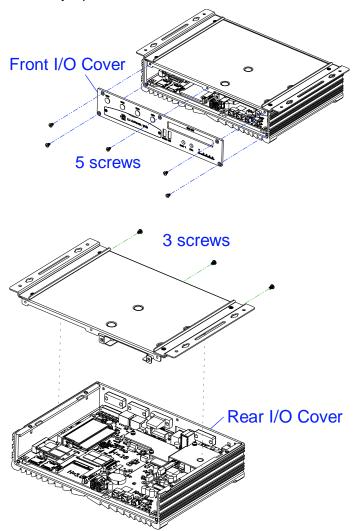
2.1.2 Storage Installation


Use either SSD, HDD or M.2 SATA card, or you can also use both for storage. For SSD, HDD, or M.2 SATA card replacement or installation, follow the instructions below.

Installation for 2.5" SSD / HDD

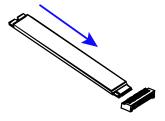
1. Release 2 screws below to pull out the SSD / HDD tray.


2. Put your 2.5" SSD / HDD onto the tray and secure it with the supplied 4 screws. Or release the 4 screws as shown below to replace with a new SSD / HDD and then fasten the screws.

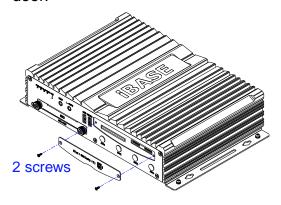

3. Put and secure the tray back to the device.

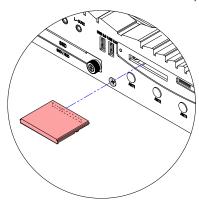
Installation for M.2 (M2280) SATA Card


1. Release 2 screws below to pull out the SSD / HDD tray.


2. Turn your MPT-3000V upside down. Remove 5 screws from the front I/O and take it apart, and also remove 3 screws from the rear I/O cover. Then carefully open the bottom cover.

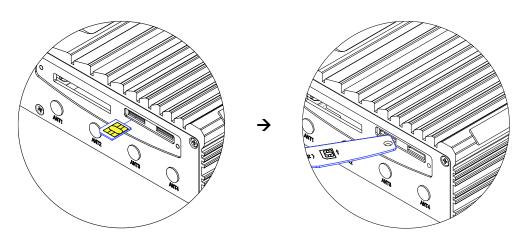
3. Install the M.2 SATA card.


- a.) Remove the heatsink by releasing the 5 screws and the brass standoff as shown above.
- b.) Align the key of the M.2 card to the M.2 interface, and insert the card slantwise.

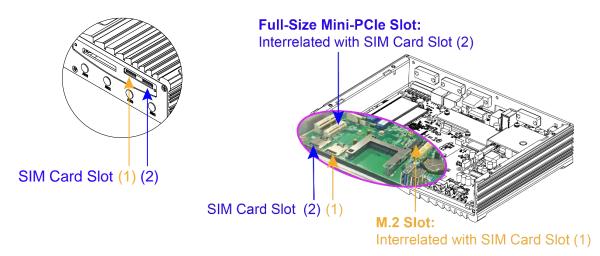

- c.) Push the M.2 card down and fix the card with brass standoff you released.
- d.) Put the thermal pad (the longer one) onto the M.2 card and secure the heatsink back.

2.1.3 CFast & Micro-SIM Card Installation

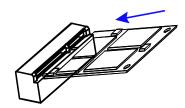
 Release 2 screws as shown below to open the CFAST & Micro-SIM card door.



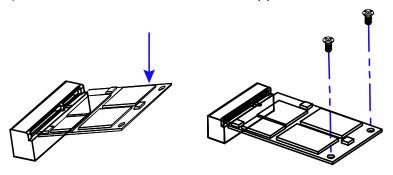
2. **For CFast card,** insert the card as below. To remove the CFast card, push the card again.


3. **For Micro-SIM card**, insert the card to one of the Micro-SIM card slot with the chip up and push the card by using your fingernail or a corner of the CFAST & Micro-SIM card door.

To remove the Micro-SIM card, push the card again.


2.1.4 Mini-PCle & M.2 Network Cards Installation

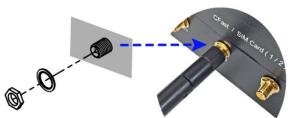
Before you start, firstly pay attention to the interrelation among the SIM card slots, mini-PCIe slot, and M.2 slot as below.

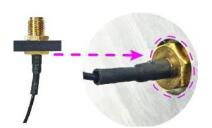


1. Locate the mini-PCle slot, align the key of the mini-PCle card to the mini-PCle interface, and insert the card slantwise.

(Insert the M.2 network card in the same way.)

2. Push the mini-PCle card down, fix it with the supplied 2 flat head screws. (Fix the M.2 network card with a supplied round head screw.)




2.1.5 WiFi / 3G / 4G Antenna Installation

Thread the WiFi / 3G / 4G antenna extension cable through an antenna hole of the front I/O cover and fasten the antenna as shown below. Then apply adhesive to the edge of the hex nut behind the front I/O cover to prevent the extension cable from falling if the cable becomes loose.

1. Thread and fasten the hex nut and the washer. Then install the antenna.

2. Apply adhesive around here.

Info: The diameter of the nut is around 6.35 mm (0.25"-36UNC).

2.1.6 Mounting Brackets Installation

Note: Before mounting the system on wall, ensure that you are following all applicable building and electric codes.

Requirements

When mounting, ensure that you have enough room for power and signal cable routing. And have good ventilation for power adapter. The method of mounting must be able to support weight of the MPT-3000V plus the suspend weight of all the cables to be attached to the system. Use the following methods for mounting your system:

Selecting the Location

Plan the mounting location thoroughly. Locations such as walkway areas, hallways, and crowded areas are not recommended. Mount the product to a flat, sturdy, structurally sound column or wall surface.

The best mounting surface is a standard countertop, cabinet, table, or other structure that is minimally the width and length of the product. This will reduce the risk that someone may accidentally wall into and damage the product. Local laws governing the safety of individuals might require this type of consideration.

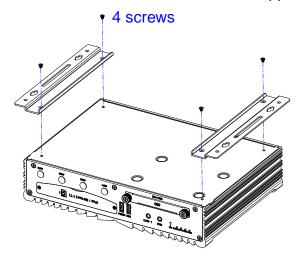
Selecting the type of wall construction

1. Mounting on a hollow wall

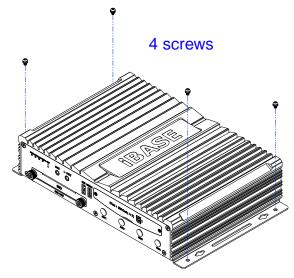
Wood surface

Use construction-grade wood and the recommended minimum thickness is 38 x 25.4 mm (1.5" x 10").

Note: This method provides the most reliable attachment for the product with little risk that the product may come loose or require ongoing maintenance.


Drywall

Drywall over wood studs is acceptable.


2. Mounting on a solid concrete or brick wall with flat and smooth surface

Installation instructions:

1. Turn your MPT-3000V upside down, attach the mounting brackets to MPT-3000V, and secure with the supplied four screws as below.

2. Prepare at least four screws (M3, 6 mm) to mount MPT-3000V on wall.

You can install MPT-3000V on plastic (LCD monitor), wood, drywall surface over studs, or a solid concrete or metal plane directly. The types of fasteners required are dependent on the type of wall construction.

Fasteners are not supplied in the product package. You will need to prepare the fasteners. Choose fasteners that are rated either **Medium Duty** or **Heavy Duty**. To assure proper fastener selection and installation, follow the fastener manufacturer's recommendations.

2.1.7 Pinout for Power Input & GPIO Connectors

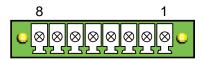
DC Power 9 ~ 36V Input Connector (Terminal Block)

The system is designed for vehicle application powered by a battery. To prevent the car battery from being damaged at the system startup, a protection scheme that the input voltage level should be above 12.5V is designed for the system.

If you would like to run the system without the protection scheme (the input voltage level higher than 12.5V), please contact your distributor or sales representative.

Pin	Assigment	Pin	Assigment
1	Ignition	3	Ground
2	DC-Input		

UPS Battery / DC Power 12V Output Connector (ATX Jack)

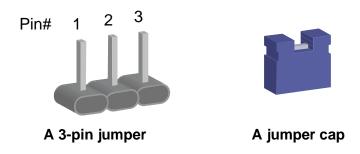

Make sure the UPS battery voltage level is above 12.5V before using the battery in order to prolong the life of the UPS battery.

Use only lead-acid batteries for the system.

DO NOT connect a DC source to be used as the UPS voltage input. This could damage the system. This connector has a charging feature.

Pin	Assigment	Pin	Assigment
1	Ground	2	Ground
3	UPS	4	12V Out

GPIO Connector (terminal block)


Pin	Assignment	Pin	Assignment
1	Ground	5	DIO4
2	DIO1	6	DIO5
3	DIO2	7	DIO6
4	DIO3	8	Ground

2.2 Setting the Jumpers

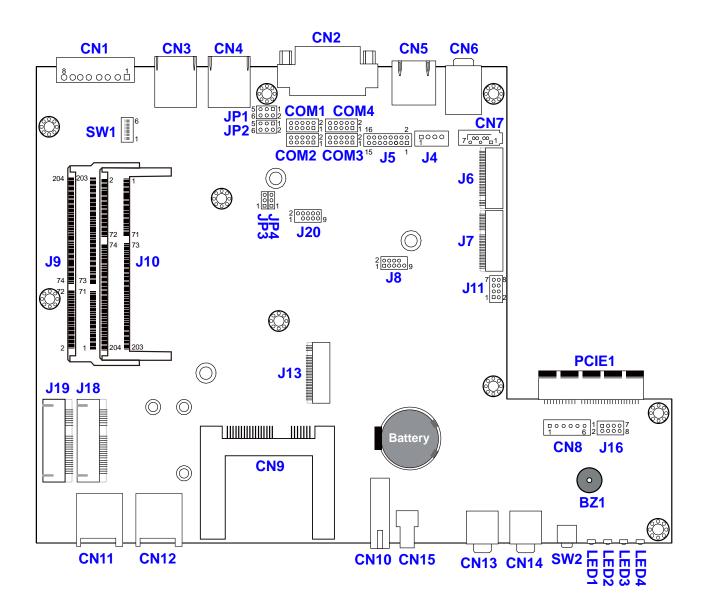
Set up and configure your MPT-3000V by using jumpers for various settings and features according to your needs and applications. Contact your supplier if you have doubts about the best configuration for your use.

2.2.1 How to Set Jumpers

Jumpers are short-length conductors consisting of several metal pins with a non-conductive base mounted on the circuit board. Jumper caps are used to have the functions and features enabled or disabled. If a jumper has 3 pins, you can connect either PIN1 to PIN2 or PIN2 to PIN3 by shorting.

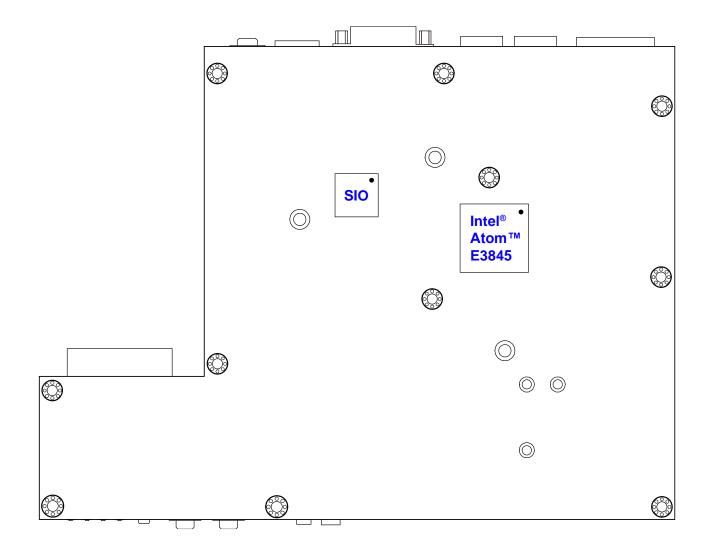
Refer to the illustration below to set jumpers.

Pin closed	Oblique view	Schematic illustration in the manual
Open		1 2 3
1-2		1 2 3
2-3		1 2 3


When two pins of a jumper are encased in a jumper cap, this jumper is **closed**, i.e. turned **On**.

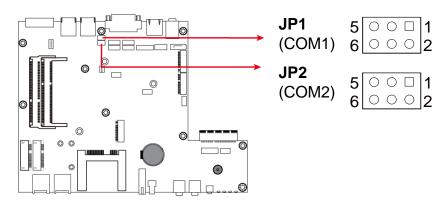
When a jumper cap is removed from two jumper pins, this jumper is **open**, i.e. turned **Off**.

iBASE


2.3 Jumper & Connector Locations on Motherboard

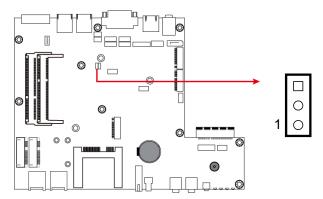
Motherboard: MBT-3001V

MBT-3001V - top

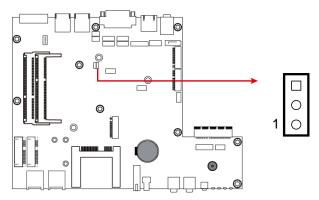


MBT-3001V - bottom

2.4 Jumpers Quick Reference


Function	Connector Name	Page
COM1, COM2 Port RS-232 Selection	JP1, JP2	24
ME Register Clearance	JP3	25
CMOS Data Clearance	JP4	25

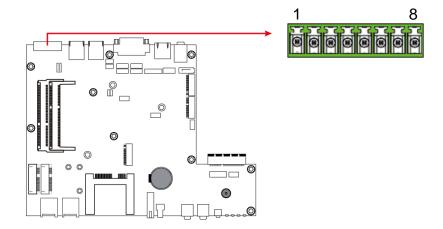
2.4.1 COM1, COM2 Port RS-232 Selection (JP1, JP2)


Function	Pin closed	Illustration
12V	1-3	5 O D 1 6 O O O 2
RI (default)	3-4	5 O O D 1 6 O O O 2
5V	3-5	5 O D 1 6 O O O 2

2.4.2 ME Register Clearance (JP3)

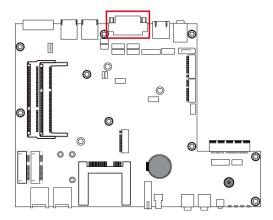
Function	Pin closed	Illustration
Normal (default)	1-2	1 •
Clear ME Register	2-3	1 0

2.4.3 CMOS Data Clearance (JP4)

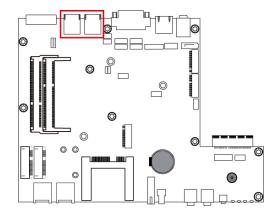


Function	Pin closed	Illustration
Normal (default)	1-2	1 •
Clear CMOS	2-3	1 🔾

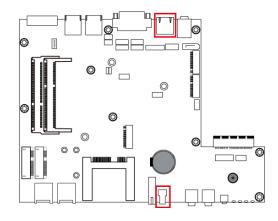
2.5 Connectors Quick Reference


Function	Connector Name	Page	
Digital I/O Port	CN1	27	
DVI-D Port	CN2	27	
LAN Port	CN3, CN4	28	
USB 2.0 Port	CN5, CN15	28	
Audio Jack	CN6, CN13, CN14	28	
SATA II Connector	CN7	29	
CFast Connector	CN9	29	
USB 3.0 Port	CN10	29	
SIM Card Slot	CN11 (interrelated with J19), CN12 (interrelated with J13)	30	
COM Port Connector	COM1, COM2, COM3, COM4	30	
SATA HDD Power Connector	J4	31	
CRT Connector	J5	31	
M.2 (M) SATA Interface	J6	32	
M.2 (E) USB2.0 / PCIe (x1) Interface	J7	32	
DDR3L SO-DIMM Socket	J9, J10	32	
Future Connector for CAN Module Connection	J11	33	
M.2 (B) USB2.0 Interface (interrelated wtih CN12)	J13	33	
Half Mini PCIe USB2.0 Connector	J18	34	
Full Mini PCIe USB2.0 / PCIe (x1) Connector (interrelated with CN11)	J19	34	
Power Module Interface	PCIE1	34	
Digital IO Pull High to +5V Switch	SW1	35	
Reset Button	SW2	35	
Power Button Connector (Reserved)	CN8		
Power Connector (Reserved)	J16		
Factory Use Only	J8, J20		

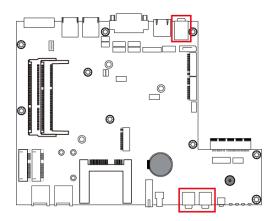
2.5.1 Digital I/O Port (CN1)

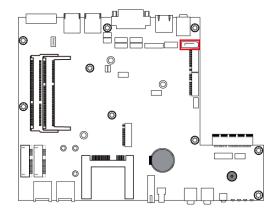

Pin	Assigment	Pin	Assigment
1	Ground	5	DIO4
2	DIO1	6	DIO5
3	DIO2	7	DIO6
4	DIO3	8	Ground

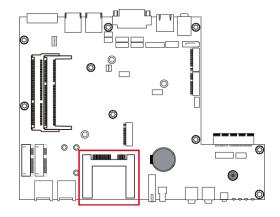
2.5.2 DVI-D Port (CN2)

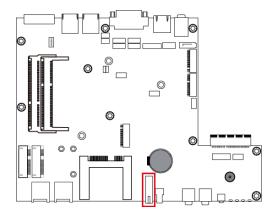


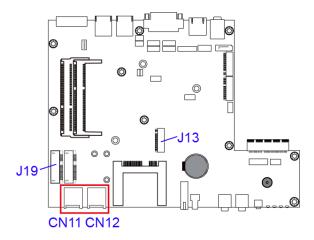
iBASE


2.5.3 LAN Port (CN3, CN4)

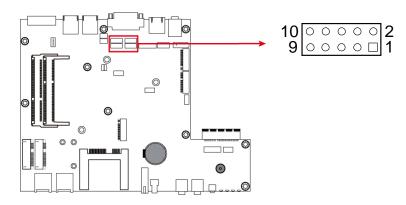

2.5.4 USB 2.0 Port (CN5, CN15)


2.5.5 Audio Jack (CN6, CN13, CN14)

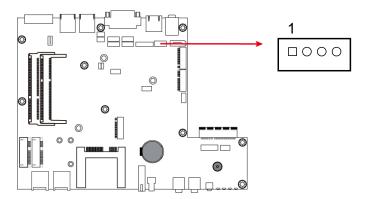

2.5.6 SATA II Connector (CN7)


2.5.7 CFast Connector (CN9)

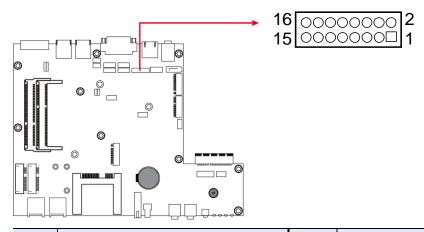
2.5.8 USB 3.0 Port (CN10)



2.5.9 SIM Card Slot (CN11, CN12)

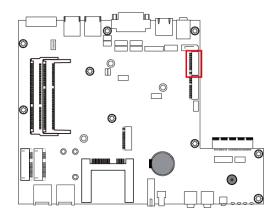

CN11 is interrelated with the mini-PCle slot J19. CN12 is interrelated with the M.2 slot J13.

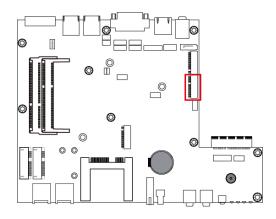
2.5.10 COM Port Connector (COM1 ~ COM4)


Pin	Assigment	Pin	Assigment
1	DCD	2	SIN
3	SOUT	4	DTR
5	Ground	6	DSR
7	RTS	8	CTS
9	RI	10	N.C.

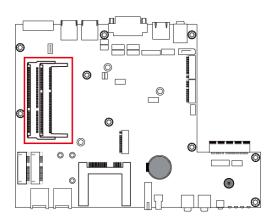
2.5.11 SATA HDD Power Connector (J4)

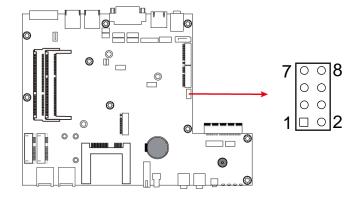
Pin	Assigment	Pin	Assigment
1	+5V	3	Ground
2	Ground	4	+12V


2.5.12 CRT Connector (J5)

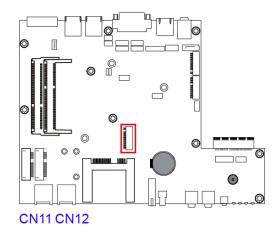

Pin	Assigment	Pin	Assigment
1	Red	2	VCC
3	Green	4	Ground
5	Blue	6	N.C.
7	N.C.	8	DDCDATA
9	Ground	10	HSYNC
11	Ground	12	VSYNC
13	Ground	14	DDCCLK
15	Ground	16	N.C.

iBASE


2.5.13 M.2 (M2280) SATA Interface (J6)

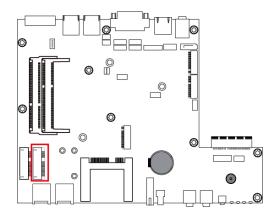

2.5.14 M.2 (E2230) USB2.0 / PCle (x1) Interface (J7)

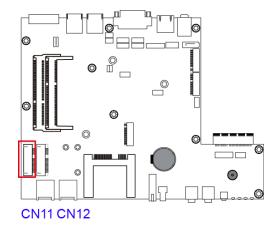
2.5.15 DDR3L SO-DIMM Socket (J9, J10)



2.5.16 Future Connector for CAN Module Connection (J11)

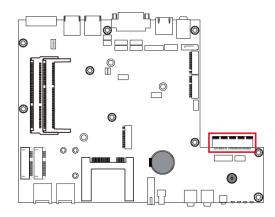
Pin	Assigment	Pin	Assigment
1	+5V	2	Ground
3	USB-	4	COM6-TX
5	USB+	6	COM6-RX
7	Ground	8	+5V


2.5.17 M.2 (B3042) USB2.0 Interface (J13)

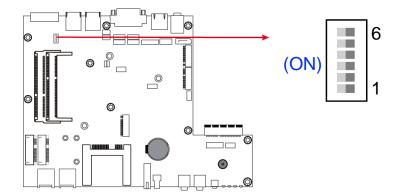

J13 is interrelated with the SIM card slot CN12.

iBASE

2.5.18 Half Mini PCle USB2.0 Connector (J18)

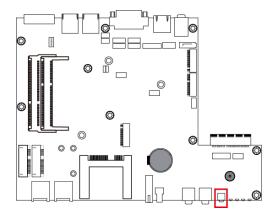


2.5.19 Full Mini PCle USB2.0 / PCle (x1) Connector (J19)



J19 is interrelated with the SIM card slot CN11.

2.5.20 Power Module Interface (PCIE1)


2.5.21 Digital IO Pull High to +5V Switch (SW1)

Switch to ON to pull high to 5V.

Pin	Assigment	Pin	Assigment
1	DIO1	4	DIO4
2	DIO2	5	DIO5
3	DIO3	6	DIO6

2.5.22 Reset Button (SW2)

Chapter 3 Driver Installation

The information provided in this chapter includes:

- Intel® Chipset Software Installation Utility
- VGA Driver Installation
- HD Audio Driver Installation
- LAN Driver Installation
- Intel® Trusted Execution Engine Installation
- Intel[®] Serial I/O Driver Installation
- G-Sensor Driver Installation

3.1 Introduction

This section describes the installation procedures for software drivers.

Note: After installing your Windows operating system, you must install the Intel[®] Chipset Software Installation Utility first before proceeding with the drivers installation.

3.2 Intel® Chipset Software Installation Utility

The Intel® Chipset drivers should be installed first before the software drivers to install INF files for Plug & Play function for the chipset components. Follow the instructions below to complete the installation.

Go to the download page of the product. Copy the compressed drivers file
to your computer. Double click the file to decompress it. Run "CDGuide" to
go to the main drivers page as shown. Click Intel and then Intel(R)
Baytrail Chipset Drivers.

2. Click Intel(R) Chipset Software Installation Utility.

3. When the *Welcome* screen to the Intel[®] Chipset Device Software appears, click **Next** to continue.

iBASE

- 4. Click **Yes** to accept the software license agreement and proceed with the installation process.
- 5. The driver has been completely installed. You are suggested to restart the computer for changes to take effect.

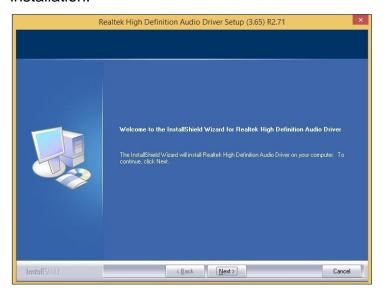
3.3 VGA Driver Installation

1. Click Intel and then Intel(R) Baytrail Chipset Drivers.

2. Click Intel(R) Baytrail Graphics Driver.

- 3. When the *Welcome* screen appears, click **Next** to continue.
- 4. Click **Yes** to agree with the license agreement and continue the installation.
- 5. The driver has been completely installed. You are suggested to restart the computer for changes to take effect.

3.4 HD Audio Driver Installation

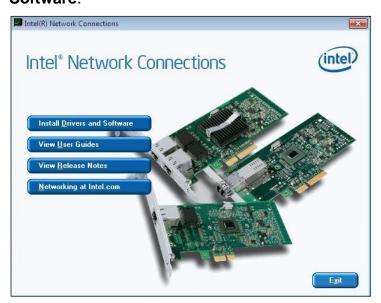

1. Click Intel and then Intel(R) Baytrail Chipset Drivers.

2. Click Realtek High Definition Audio Driver.

3. On the *Welcome* screen of the InstallShield Wizard, click **Next** for installation.

4. The driver has been completely installed. You are suggested to restart the computer for changes to take effect.

3.5 LAN Driver Installation


1. Click Intel and then Intel(R) Baytrail Chipset Drivers.

2. Click Intel LAN Drivers.

3. On the screen of *Intel® Network Connections*, click **Install Drivers and Software**.

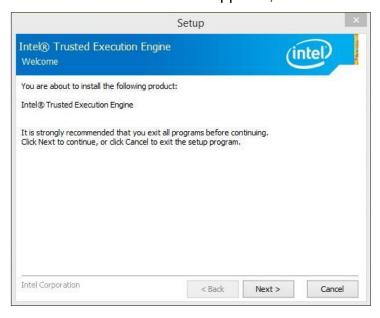
iBASE

4. When the Welcome screen appears, click Next.

- 5. Accept the license agreement and click **Next** for installation.
- 6. On the *Setup Options* screen, click the checkbox to select the desired driver(s) for installation. Then click **Next** to continue.
- 7. The wizard is ready for installation. Click Install.

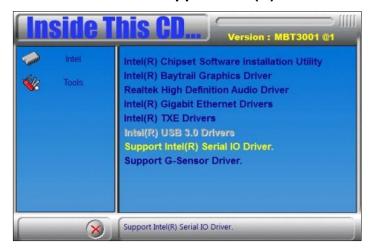
8. The driver has been completely installed. You are suggested to restart the computer for changes to take effect.

Intel® Trusted Execution Engine Installation

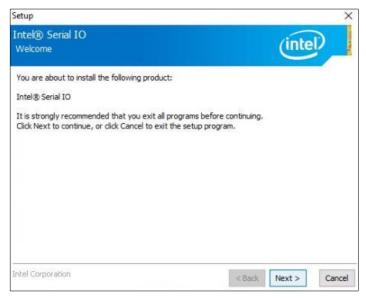

1. Click Intel and then Intel(R) Baytrail Chipset Drivers.

2. Click Intel and then Intel(R) TXE Drivers.

3. When the *Weocome* screen appears, click **Next** to contiune installation.


- 4. Accept the license agreement and click **Next** for installation.
- 5. The driver has been completely installed. Click Finish and restart the computer for changes to take effect.

3.7 Intel® Serial I/O Driver Installation


1. Click Intel and then Intel(R) Baytrail Chipset Drivers.

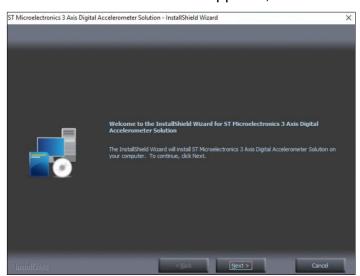
2. Click Intel and then Support Intel(R) Serial IO Driver.

3. When the *Weocome* screen appears, click **Next** to contiune installation.

- 4. Accept the license agreement and click **Next** for installation.
- 5. The driver has been completely installed. You are suggested to restart the computer for changes to take effect.

3.8 G-Sensor Driver Installation

Note: The G-Sensor driver is only installable on Windows 10 (64bit).


1. Click Intel and then Intel(R) Baytrail Chipset Drivers.

2. Click Intel and then Support G-Sensor Driver.

3. When the *Weocome* screen appears, click **Next** to contiune installation.

- 4. Accept the license agreement and click **Next** and then click **Install**.
- 5. The driver has been completely installed. You are suggested to restart the computer for changes to take effect.

Chapter 4 BIOS Setup

This chapter describes the different settings available in the AMI BIOS that comes with the board. The topics covered in this chapter are as follows:

- Main Settings
- Advanced Settings
- Chipset Settings
- Security Settings
- Book Settings
- Save & Exit

4.1 Introduction

The BIOS (Basic Input/Output System) installed in the ROM of your computer system supports Intel® processors. The BIOS provides critical low-level support for standard devices such as disk drives, serial ports and parallel ports. It also provides password protection as well as special support for detailed fine-tuning of the chipset controlling the entire system.

4.2 BIOS Setup

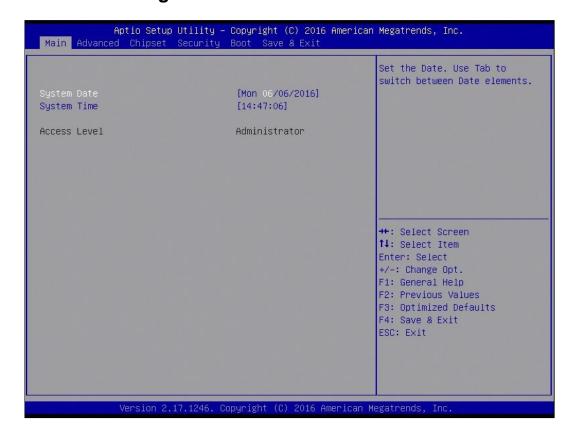
The BIOS provides a Setup utility program for specifying the system configurations and settings. The BIOS ROM of the system stores the Setup utility. When you turn on the computer, the BIOS is immediately activated. Press the key immediately allows you to enter the Setup utility. If you are a little bit late pressing the key, POST (Power On Self Test) will continue with its test routines, thus preventing you from invoking the Setup.

If you still need to enter Setup, restart the system by pressing the "Reset" button or simultaneously pressing the <Ctrl>, <Alt> and <Delete> keys. You can also restart by turning the system Off and back On again.

The following message will appear on the screen:

```
Press <DEL> to Enter Setup
```

In general, press the arrow keys to highlight items, <Enter> to select, the <PgUp> and <PgDn> keys to change entries, <F1> for help, and <Esc> to quit.


When you enter the BIOS Setup utility, the *Main Menu* screen will appear on the screen. The Main Menu allows you to select from various setup functions and exit choices.

Warning: It is strongly recommended that you avoid making any changes to the chipset defaults.

These defaults have been carefully chosen by both AMI and your system manufacturer to provide the absolute maximum performance and reliability. Changing the defaults could make the system unstable and crash in some cases.

4.3 Main Settings

BIOS Setting	Description
System Date	Sets the date. Use the <tab> key to switch between the date elements.</tab>
System Time	Set the time. Use the <tab> key to switch between the time elements.</tab>

iBASE

4.4 Advanced Settings

This section allows you to configure, improve your system and allows you to set up some system features according to your preference.

BIOS Setting	Description
ACPI Settings	System ACPI Parameters.

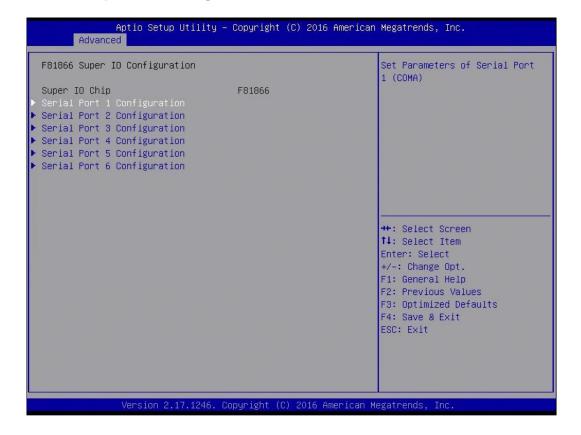
4.4.1

4.4.2 ACPI Settings

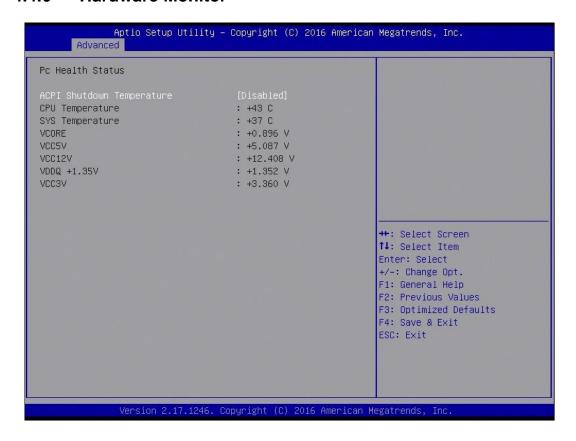

BIOS Setting	Description
Enable Hibernation	Enables or disables the System ability to Hibernate (OS/S4 Sleep State). This option may not be effective with some OS.
ACPI Sleep State	Selects ACPI sleep state that the system will enter when the SUSPEND button is pressed.

4.4.3 Digital I/O Configuration

BIOS Setting	Description
Digital GPIO 1 ~ 6	Configure Digital GPIO as input or output.

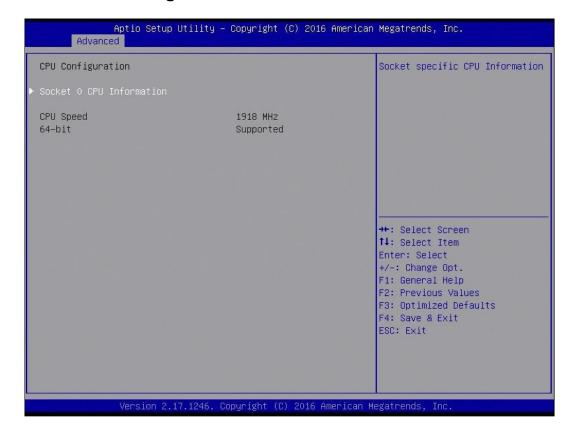

4.4.4 Power Board Configuration

BIOS Setting	Description
	Allows to set the delay timer for turning on or off the power board.

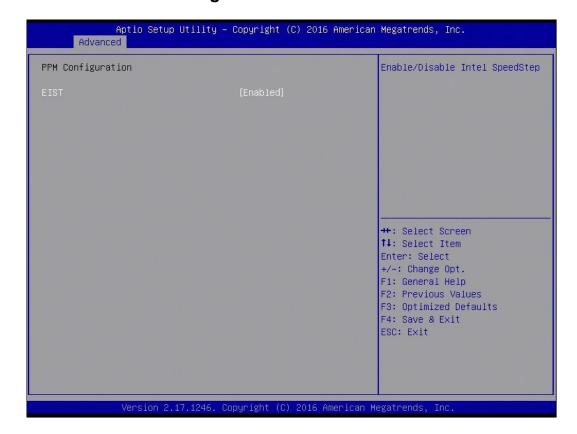


4.4.5 Super IO Configuration

BIOS Setting	Description
Serial Port Configuration	Sets Parameters of Serial Ports. You can enable / disable the serial port and select an optimal settings for the Super IO device. * COM5 is for internal use only. COM6 sigals come from the on-board connector J11, and is reserved for future use to connect to CAN
	module.


4.4.6 Hardware Monitor

BIOS Setting	Description
Smart Fan Function	This field enables or disables the smart fan feature.
	Options: Disabled (default), 50°C, 60°C, 70°C,
	80°C, 90°C
Shutdown Temperature	This field enables or disables the Shutdown Temperature
	Options: Disabled (default). 70°C, 75°C, 80°C,
	85°C, 90°C, 95°C
Temperatures / Voltages	These fields are the parameters of the hardware monitoring function feature of the motherboard. The values are read-only values as monitored by the system and show the PC health status

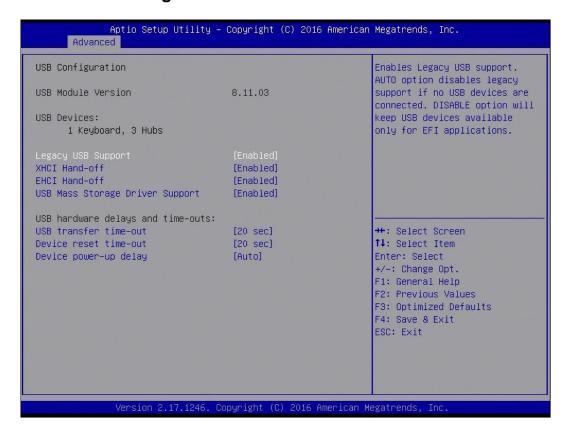

CPU Configuration 4.4.7

BIOS Setting	Description
Socket 0 CPU Information	Displays the specific socket CPU Information.

iBASE

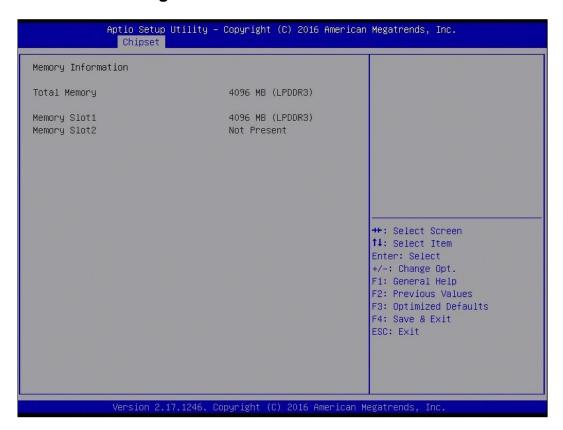
4.4.8 CPU PPM Configuration

BIOS Setting	Description
EIST	Enables / Disables Intel SpeedStep.

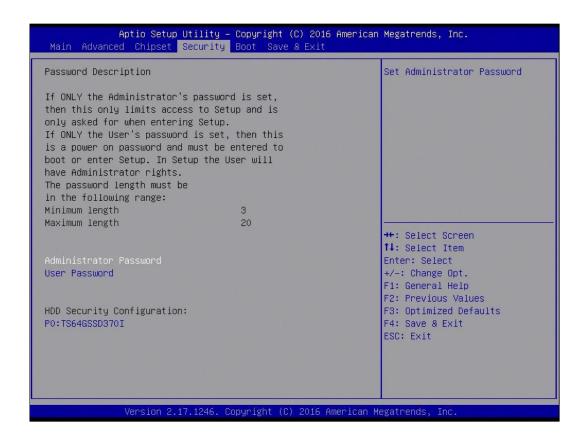

SATA Configuration 4.4.9

BIOS Setting	Description
Serial-ATA (SATA)	Enables / Disables the Serial ATA.
SATA Mode	Selects IDE / AHCI Mode.
Serial –ATA Port 0	Enables / Disables Serial Port 0.
SATA Port0 HotPlug	Enables / Disables SATA Port 0 HotPlug.
Serial –ATA Port 1	Enables / Disables Serial Port 1.
SATA Port1 HotPlug	Enables / Disables SATA Port 1 HotPlug.

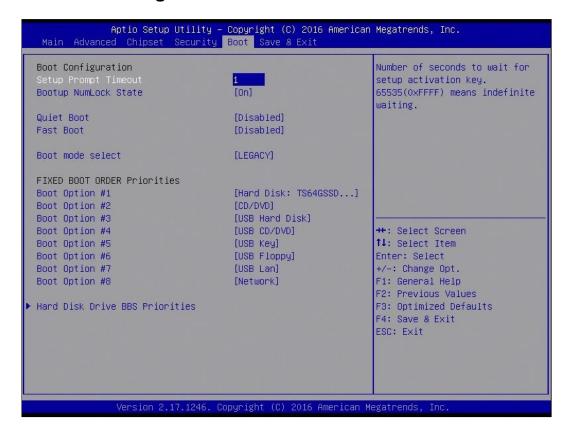
4.4.10 USB Configuration



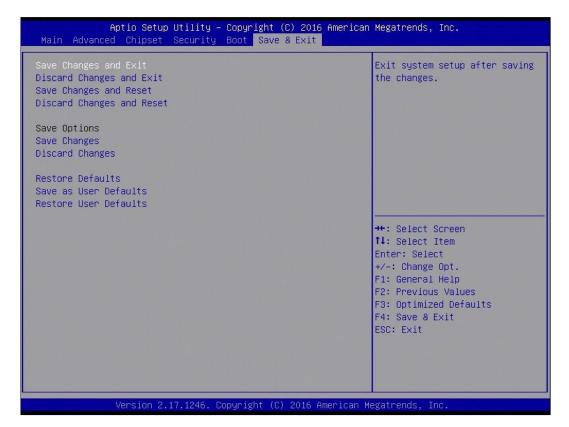
4.5 Chipset Settings


4.5.1 North Bridge

iBASE


4.6 Security Settings

This section allows you to configure, improve your system, and set up some system features according to your preference.


BIOS Setting	Description
Administrator Password	Sets an administrator password for the setup utility.
User Password	Sets a user password.

4.7 Boot Settings

BIOS Setting	Description
Setup Prompt Timeout	Number of seconds to wait for setup activation key. 65535 (0xFFFF) means indefinite waiting.
Bootup NumLock State	Selects the keyboard NumLock state.
Quiet Boot	Enables / Disables Quiet Boot option.
Fast Boot	Enables / Disables boot with initialization of a minimal set of devices required to launch the active boot option. Has no effect for BBS boot options.
Boot Option Priorities	Sets the system boot order.

4.8 Save & Exit Settings

BIOS Setting	Description
Save Changes and Exit	Exits system setup after saving the changes.
Discard Changes and Exit	Exits system setup without saving any changes.
Save Changes and Reset	Resets the system after saving the changes.
Discard Changes and Reset	Resets system setup without saving any changes.
Save Changes	Saves changes done so far to any of the setup options.
Discard Changes	Discards changes done so far to any of the setup options.
Restore Defaults	Restores / Loads defaults values for all the setup options.
Save as User Defaults	Saves the changes done so far as user defaults.
Restore User Defaults	Restores the user defaults to all the setup options.

Appendix

This section provides the mapping addresses of peripheral devices and the sample code of watchdog timer configuration.

- I/O Port Address Map
- Interrupt Request Lines (IRQ)
- Watchdog Timer Configuration
- Software Development Kit for WDT.DLL

iBASE

A. I/O Port Address Map

Each peripheral device in the system is assigned a set of I/O port addresses which also becomes the identity of the device. The following table lists the I/O port addresses used.

Address	Device Description
070h – 07Fh	Real Time Clock
2E0h – 2E7h	Serial Port #6 (COM6) * COM6 sigals come from the on-board connector J11, and is reserved for future use to connect to CAN module.
2E8h – 2EFh	Serial Port #4 (COM4)
2F0h – 2F7h	Serial Port #3 (COM3)
2F8h – 2FFh	Serial Port #2 (COM2)
3B0h – 3DFh	Intel(R) HD Graphics
3E8h – 3EFh	Serial Port #5 (COM5) * COM5 is for internal use only.
3F8h – 3FFh	Serial Port #1 (COM1)
0000 – FFFF	PCI-e Root Complex

B. Interrupt Request Lines (IRQ)

Peripheral devices use interrupt request lines to notify CPU for the service required. The following table shows the IRQ used by the devices on board.

Level	Function
IRQ0	System Timer
IRQ3	Serial Port #2
IRQ4	Serial Port #1
IRQ6	Serial Port #5
IRQ7	Serial Port #4
IRQ8	High precision event timer
IRQ10	Serial Port #3
IRQ11	Serial Port #6
IRQ22	High Definition Audio Controller

C. Watchdog Timer Configuration

The Watchdog Timer (WDT) is used to generate a variety of output signals after a user programmable count. The WDT is suitable for the use in the prevention of system lock-up, such as when software becomes trapped in a deadlock. Under these sorts of circumstances, the timer will count to zero and the selected outputs will be driven.

Under normal circumstance, you will need to restart the WDT at regular intervals before the timer counts to zero.

Sample Code:

```
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
// KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
// PURPOSE.
//
//-----
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include "F81866.H"
int main (int argc, char *argv[]); void EnableWDT(int);
void DisableWDT(void);
int main (int argc, char *argv[])
unsigned char bBuf; unsigned char bTime; char **endptr;
char SIO;
printf("Fintek 81866 watch dog program\n"); SIO = Init_F81866();
if (SIO == 0)
printf("Can not detect Fintek 81866, program abort.\n"); return(1);
\frac{1}{i} (SIO == 0)
if (argc != 2)
printf(" Parameter incorrect!!\n"); return (1);
bTime = strtol (argv[1], endptr, 10);
printf("System will reset after %d seconds\n", bTime);
if (bTime)
    DisableWDT(); } return 0;
```

```
void EnableWDT(int interval)
unsigned char bBuf;
bBuf = Get_F81866_Reg(0x2B); bBuf &= (~0x20);
Set_F81866_Reg(0x2B, bBuf); //Enable WDTO
Set_F81866_LD(0x07); //switch to logic device 7
Set_F81866_Reg(0x30, 0x01); //enable timer
bBuf = Get_F81866_Reg(0xF5); bBuf &= (~0x0F);
bBuf = 0x52;
Set_F81866_Reg(0xF5, bBuf); //count mode is second Set_F81866_Reg(0xF6,
interval); //set timer
bBuf = Get_F81866_Reg(0xFA); bBuf |= 0x01;
Set_F81866_Reg(0xFA, bBuf); //enable WDTO output
bBuf = Get F81866 Reg(0xF5); bBuf = 0x20;
Set_F81866_Reg(0xF5, bBuf); //start counting
}
//-----
void DisableWDT(void)
unsigned char bBuf;
Set_F81866_LD(0x07); //switch to logic device 7 bBuf = Get_F81866_Reg(0xFA);
bBuf \&= ~0x01;
Set_F81866_Reg(0xFA, bBuf); //disable WDTO output
bBuf = Get_F81866_Reg(0xF5); bBuf &= ~0x20;
bBuf = 0x40;
Set F81866 Reg(0xF5, bBuf); //disable WDT
//-----
```

```
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
// KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
// PURPOSE.
//
//-----
#include "F81866.H"
#include <dos.h>
unsigned int F81866 BASE; void Unlock F81866 (void); void Lock F81866 (void);
unsigned int Init_F81866(void)
unsigned int result; unsigned char ucDid;
F81866 BASE = 0x4E;
result = F81866_BASE;
ucDid = Get F81866 Reg(0x20);
if (ucDid == 0x07) //Fintek 81866
    goto Init_Finish; }
F81866\_BASE = 0x2E;
result = F81866_BASE;
ucDid = Get_F81866_Reg(0x20);
if (ucDid == 0x07)
               //Fintek 81866
    goto Init_Finish; }
F81866\_BASE = 0x00;
result = F81866 BASE;
Init Finish:
return (result);
//-----
void Unlock F81866 (void)
outportb(F81866 INDEX PORT, F81866 UNLOCK); outportb(F81866 INDEX PORT,
F81866 UNLOCK);
//-----
void Lock_F81866 (void)
outportb(F81866 INDEX PORT, F81866 LOCK);
void Set_F81866_LD( unsigned char LD)
Unlock_F81866();
outportb(F81866_INDEX_PORT, F81866_REG_LD);
outportb(F81866_DATA_PORT, LD); Lock_F81866();
```

```
void Set_F81866_Reg( unsigned char REG, unsigned char DATA)
Unlock F81866(); outportb(F81866 INDEX PORT, REG); outportb(F81866 DATA PORT,
DATA); Lock_F81866();
//-----
unsigned char Get_F81866_Reg(unsigned char REG)
unsigned char Result; Unlock F81866();
outportb(F81866_INDEX_PORT, REG); Result = inportb(F81866_DATA_PORT);
Lock F81866();
return Result;
//-----
//-----
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
// KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
// PURPOSE.
//
//-----
#ifndef F81866_H
#define F81866_H 1
#defineF81866_INDEX_PORT (F81866_BASE)
#defineF81866_DATA_PORT (F81866_BASE+1)
//-----
#defineF81866 REG LD 0x07
//-----
#define F81866 UNLOCK 0x87
#defineF81866_LOCK 0xAA
//-----
unsigned int Init F81866(void);
void Set_F81866_LD( unsigned char);
void Set F81866 Reg(unsigned char, unsigned char); unsigned char
Get_F81866_Reg( unsigned char);
//-----
#endif // F81866 H
```

D. Software Development Kit for WDT.DLL

1.) OS Supported

Windows SP (32-bit / 64-bit) or above

2.) Driver Installation

For 32-bit environment:

Step 1:

Copy the file **KMUI32_1K.SYS** to <%WINDIR%>\SYSTEM32\DRIVERS.

Step 2:

The following parameters must be written to your registry.

HKLM, "System\CurrentControlSet\Services\KMUI32_1K", "ErrorControl", %REG_DWORD%, 0x00000001

HKLM, "System\CurrentControlSet\Services\ KMUI32_1K", "Type", %REG_DWORD%, 0x00000001

HKLM, "System\CurrentControlSet\Services\ KMUI32_1K", "Start", %REG_DWORD%, 0x00000000

HKLM, "System\CurrentControlSet\Services\
KMUI32_1K", "DisplayName", %REG_SZ%, "KMUI32_1K"

Step 3:

Restart the system.

For 64-bit environment:

Step 1:

Copy "KMUI64 1K.SYS" file to <%WINDIR%>\SYSTEM32\DRIVERS

Step 2:

The following parameters must be written to your registry.

 $\label{lem:hklm} HKLM, "System\CurrentControlSet\Services\KMUI64_1K", "ErrorControl", \\ \%REG_DWORD\%, 0x00000001$

HKLM,"System\CurrentControlSet\Services\ KMUI64_1K","Type",%REG_DWORD%,0x00000001

HKLM,"System\CurrentControlSet\Services\ KMUI64_1K","Start",%REG_DWORD%,0x00000000

HKLM, "System\CurrentControlSet\Services\ KMUI64_1K", "DisplayName", %REG_SZ%, "KMUI64_1K"

Step 3:

Restart the system.

Note: Do not install both of the 32-bit and 64-bit drivers on an operating system.

3.) Exportion from IB_WDT.DLL / IB_WDT.64.DLL

```
extern "C" __declspec(dllexport) int __stdcall InstallDriver(void);
extern "C" __declspec(dllexport) int __stdcall RemoveDriver(void);
extern "C" __declspec(dllexport) char* __stdcall GetWDTInfo(void);
extern "C" __declspec(dllexport) int __stdcall EnableWDT(int);
extern "C" __declspec(dllexport) int __stdcall DisableWDT(int);
extern "C" __declspec(dllexport) int __stdcall IsDioAvailable(int);
extern "C" __declspec(dllexport) int __stdcall SetDioInputMask(int);
extern "C" __declspec(dllexport) int __stdcall SetDioOutputMask(int);
extern "C" __declspec(dllexport) int __stdcall GetDioInput(int);
extern "C" __declspec(dllexport) int __stdcall SetDioOutput(int);
```

Note:

- 1. The **IB_WDT.DLL** is of 32-bit and works on 32-bit and 64-bit Windows operating system. The "IB_WDT.64.DLL" is for 64bit Windows only.
- 2. The routines are not thread-safe. Your software engineers should take the responsibility to avoid multi-entry condition.

Driver Initialization & Deinitalization

```
extern "C" __declspec(dllexport) int __stdcall InstallDriver(void);
Input : None
Output : Return 1 if device driver loads successfully; otherwise return 0.
```

Note: This function should be invoked before Watchdog and Digital I/O routines.

```
extern "C" __declspec(dllexport) int __stdcall RemoveDriver(void);
Input : None
Output : Always return 1.
```

Note: This function should be invoked before the program closes and it will release the device driver and memory for **ib_wdt.dll**. If the program is closed without calling this routine, resource leak may occur.

iBASE

Watchdog

```
extern "C" __declspec(dllexport) char * __stdcall GetWDTInfo(void);
Input : None
Output : Return a string that describes the module information.

extern "C" __declspec(dllexport) int __stdcall EnableWDT(int);
Input : Timer interval, depending on the WDT chip
Output : Always return "0"
```

For further information, refer to the datasheet for WDT or contact your sales representative.

```
extern "C" __declspec(dllexport) int __stdcall DisableWDT(int);
nput : Dummy data and will be ignored.
```

Output : Always return "0"

Digital I/O

extern "C" __declspec(dllexport) int __stdcall IsDioAvailable(int);

Input : Dummy data and will be ignored

Output : Return 1 if the digital I/O is available, otherwise return 0.

extern "C" declspec(dllexport) int stdcall SetDioInputMask(int);

Input: : Hardware parameter for digital I/O input function call.

For example, the 6 GPIO functions:

GPIO_0 to GPIO_2 are mapped as the input functions, and GPIO_4 to GPIO_6 are mapped as the output functions.

In this case, the parameter for "SetDioInputMask" is 0x07 and it indicates that GPIO_0 to GPIO_2 are the input functions.

The parameter for "SetDioOutputMask" is 0x70 and it indicates that GPIO_4 to GPIO_6 are the output functions.

Output: Dummy data and should be ignored.

extern "C" declspec(dllexport) int stdcall SetDioOutputMask(int);

Input: Hardware parameter for digital I/O output function call

For further information, refer to the following explanation of "SetDioInputMask" routine.

SetDioInputMask:

```
if ((*lplsDioAvailable)(0))
       {
                   int DioInput;
                   printf(" Test for digital IO ....\n");
                   //Please check digital IO setting in BIOS setup utility
                   //Here example as follow:
                   // Digital GPIO [1..3] = Input
                   // Digital GPIO [4..6] = Output
                   //set hardware information for GPIO chip
                   //bit 0..2 : input for GPIO_0 to GPIO_2
                   //bit 4..6 : output for GPIO_4 to GPIO_6
                   (*lpSetDioInputMask)(0x07);
                   (*lpSetDioOutputMask)(0x70);
                   DioInput = (*IpGetDioInput)(0);
                   printf(" Current GPIO_0 to GPIO_2 is 0x%X\n", DioInput);
     while(1)
     {
                               (*IpSetDioOutput)(0x00);
                               printf(" Set GPIO_4 to GPIO_6 to LOW\n");
                               (*lpSetDioOutput)(0x70);
                               printf(" Set GPIO_4 to GPIO_6 to HIGH\n");
                               (*lpSetDioOutput)(0x30);
                               printf(" Set GPIO_4 to GPIO_5 to HIGH\n");
                               (*lpSetDioOutput)(0x60);
                               printf(" Set GPIO_5 to GPIO_6 to HIGH\n");
                               Sleep(500);
                               if (_kbhit())
                   break;
       }//if (kbhit())
                   }//while(1)
       }//if ((*lpIsDioAvailable)(0))
```

Note: Be sure to set up the input / output for GPIO bits in BIOS identically with the GPIO hardware information above.

E. Motherboard MCU ISP Specifications

1.) Description

Security MCU provides following functionality

Getting Firmware Version

Software can get the firmware version, MCU provides commands to get current Major Version, Minor version and build version.

Setting Power-On-Delay Timer

MCU provides command to set power on delay timer, when arrived the setting time, MCU will send power button to let the system power on.

Setting Power-Off-Delay Timer

MCU provides command to set power off delay timer, when arrived the setting time, MCU will send power button to let the system power off.

Setting DC-Off Delay Timer

MCU provides command to set DC off delay timer, when arrived the setting time, MCU will cut off system power.

Setting Low Delay Timer

MCU provides command to set low delay timer, when car battery or UPS battery voltage is lower than UVP setting voltage, start low delay timer, when arrived the setting time, MCU will send power button to let the system power off.

Setting THL Delay Timer

MCU provides command to set low delay timer, when system temperature is lower than THL low setting temperature or higher than THL max setting temperature, start THL delay timer, when arrived the setting time, MCU will send power button to let the system power off.

Setting THL Max Temperature

MCU provides command to set high temperature protection, when system temperature is higher than THL max setting value, MCU trigger THL delay timer.

Setting THL Low Temperature

MCU provides command to set low temperature protection, when system temperature is lower than THL low setting value, MCU trigger THL delay timer.

iBASE

Setting CB UVP Voltage

MCU provides command to set under voltage protection of cat battery, when car battery voltage is lower than CB UVP setting value, MCU will check the voltage of UPS battery whether change power source to UPS battery or not.

Setting PB UVP Voltage

MCU provides command to set under voltage protection of UPS battery, when UPS battery voltage lower than PB UVP setting value, MCU will check the voltage of car battery whether change power source to car battery or not.

Setting CB Good Voltage

MCU provides command to set CB good voltage protection of cat battery, when CB voltage level higher than CB good voltage start charging UPS battery.

Setting PB Good Voltage

MCU provides command to set PB good voltage protection of UPS battery, when system on and car battery voltage lower than CB good and UPS battery voltage higher than PB good. System will change power source to UPS battery.

Getting current CB & PB Voltage

MCU provides command to get current car battery voltage and UPS battery voltage.

Setting CHG STV Voltage

MCU provides command to set high of UPS battery charging voltage range, when system on and UPS battery voltage higher than CHG STV. System will charge UPS battery.

Setting CHG SPV Voltage

MCU provides command to set UPS battery charging range, when system on and UPS battery voltage lower than CHG SPV. System discharge UPS battery.

Setting Temperature Offset

MCU provides command to set temperature offset. It can adjust temperature disparity between system and power board.

Setting CB Voltage Offset

MCU provides command to set car battery voltage offset. It can adjust this voltage disparity between actual measurement and detected form MCU.

Setting PB Voltage Offset

MCU provides command to set UPS battery voltage offset. It can adjust this voltage disparity between actual measurement and detected form MCU.

Getting status

MCU provides command to get current status which includes the power on delay timer setting, power off delay timer setting, low delay setting value, DC off timer value, temperature protect setting value, voltage protect setting value, Car battery & UPS battery voltage offset setting value, UPS battery charge voltage setting value and current Car battery (CB) & UPS battery(PB) voltage and current temperature of power borad.

Note: Before using the ISP, your software engineer has to make sure the firmware version (GET_FORMWARE_VERSION) MUST be as follows to make the ISP function workable.

Major version is 0.

Minor version is 0.

Build version is 5 (or above).

2.) Protocol

Signal transmit format

Bandwidth

Baud rate: 19200 bps

Data Format

Parity: No Parity 1 start bit 8 data bits 1 stop bit

Packet Format

Header	Size	Command	Data	CRC
2 bytes	1 byte	1 byte	0 – 64 bytes	2 bytes

Header bytes indicate start of the packet.

Size specifies number of bytes for data field.

Command identifies action, which is required to be performed on the data.

CRC verifies data integrity for header, size, command and data bytes.

CRC

Protocol uses 16-bit CCITT CRC to verify data integrity. $P(x) = X^{16} + X^{12} + X^5 + 1$

```
unsigned calc_crc(unsigned char *data, unsigned n, unsigned start) {
    unsigned I, k, q, c, crcval;
    crcval=start;
    for (I=0; I<n; I++) {
        c=data(I) & 0xFF;
        q=(crcval^c) & 0x0F;
        crcval=(crcval>>4)^(q*0x1081);
        q=(crcval^(c>>4)) & 0x0F;
        crcval=(crcval>>4)^(q*0x1081);
    }
    return crcval;
}
```

Communications flow

Communication between PC and Security MCU utilizes Master-Slave model, where PC is a master, and Security MCU is a slave. Master sends requests to the slave, and slave has to reply to them. Slave acts like a passive device and cannot send any requests to the master.

3.) Command and Reply Codes

Summary

Code	Value	Description
GET_FIRMWARE_VERSION	0x01	Get Firmware version
SET_POWER_ON_DELAY_TIMER	0x24	Power on delay timer setting
SET_POWER_OFF_DELAY_TIMER	0x25	Power off delay timer setting
SET_DC_OFF_DELAT_TIMER S	0x26	DC off delay timer setting
SET_LOW_DELAY_TIMER	0x27	CB & PB protect voltage timer setting
SET_THL_DELAY_TIMER	0x28	Temperature protect timer setting
SET_THL_MAX	0xA0	High temperature protect setting
SET_THL_LOW	0xA1	Low temperature protect setting
GET_THL_NOW	0xA2	Get current temperature
SET_CB_UVP	0xB0	Setting Low voltage protect for CB(car battery)
SET_PB_UVP	0xB1	Setting Low voltage protect for PB(ups battery)
SET_CB_POWRE_GOOD	0xB2	Setting CB (car battery) good voltage
SET_PB_POWRE_GOOD	0xB3	Setting PB (ups battery) good voltage
GET_CURRENT_CB_PB_VOLTAGE	0xB4	Get current voltage for CB & PB

Code	Value	Description
SET_CHG_STV	0xB5	UPS charge voltage setting
SET_CHG_SPV	0xB6	UPS discharge voltage setting
SET_THL_OFFSET	0xC0	Adjust difference for temperature
SET_CB_OFFSET	0xC1	Adjust difference for CB voltage
SET_PB_OFFSET	0xC2	Adjust difference for PB voltage
GET_STATUS	0x20	Get Current Status

• Getting Firmware Version

Parameter: GET_FIRMWARE_VERSION

Reads version number of the security MCU firmware.

Request:

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	GET_FIRMWARE_VERSION	None	

Reply:

Header	Size	Command	Data	CRC
0xFF 0xEE	Size of Version structure	GET_FIRMWARE_VERSION	BSL Version Structure	

BSL Version Structure

Field	Туре	Description
Major Version	Byte	Major version number (0x00)
Minor Version	Byte	Minor version number (0x00)
Build	Byte	Build version number (0x05)

Note: In this spec, MCU's build version must be 0x05.

Setting Power-On Delay Timer

Parameter: SET_POWER_ON_DELAY_TIMER

Sets power on delay timer.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF	0x02	SET_POWER_ON_DELAY_TIMER	N	Ν	
0xEE			(mins)	(secs)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_POWER_ON_DELAY_TIMER	None	

Note: Data1 range must be $0 \sim 59$.

Setting Power-Off Delay Timer

Parameter: SET_POWER_OFF_DELAY_TIMER

Sets power off delay timer.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF	0x02	SET_POWER_OFF_DELAY_TIMER	N	N	
0xEE			(mins)	(secs)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_POWER_OFF_DELAY_TIMER	None	

Note: Data1 range must be $0 \sim 59$.

• Setting DC-Off-Delay Timer

Parameter: SET_DC_OFF_DELAY_TIMER

Sets DC off delay timer.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF	0x02	SET_DC_OFF_DELAY_TIMER	Ν	Ν	
0xEE			(mins)	(secs)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_DC_OFF_DELAY_TIMER	None	

Note: Data1 range must be 0 ~ 59.

• Setting Low Delay Timer

Parameter: SET_LOW_ DELAY_TIMER

Sets low delay timer.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_LOW_DELAY_TIMER	N (mins)	N (secs)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_LOW_DELAY_TIMER	None	

Note: Data1 range must be $0 \sim 59$.

Setting THL Delay Timer

Parameter: SET_THL_ DELAY_TIMER

Sets THL delay timer.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF	0x02	SET_THL_DELAY_TIMER	Ν	Ν	
0xEE			(mins)	(secs)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_THL_DELAY_TIMER	None	

Note: Data1 range must be $0 \sim 59$.

Setting THL Max

Parameter: SET_THL_ MAX_TEMPERATURE_VALUE

Sets max. temperature protection.

Request:

Header	Size	Command	Data	CRC
0xFF	0x01	SET_THL_MAX	N	
0xEE			(degree)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_THL_MAX	None	

Note: Data range must be $+85\sim$ (-50).

Setting THL Low

Parameter: SET_THL_ LOW_TEMPERATURE_VALUE

Sets the low temperature protection.

Request:

Header	Size	Command	Data	CRC
0xFF	0x01	SET_THL_LOW	N	
0xEE			(degree)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_THL_LOW	None	

Note: Data range must be +85~ (-50).

Getting THL Now

Parameter: GET_THL_ NOW

Gets the current temperature.

Request:

Header	Size	Command	CRC
0xFF 0xEE	0x00	SET_THL_MOW	

Reply

Header	Size	Command	Data	CRC
0xFF	0x01	SET_THL_NOW	N	
0xEE			(degree)	

Setting CB UVP

Parameter: SET_CB_UVP

Sets under voltage protection for car battery.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_CB_UVP	High Byte	Low Byte	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_CB_UVP	None	

Round off to the 1st decimal place.

Ex. Setting 11.2V mapping to $11200 (11.2 \times 1000) = 2BC0 (hex)$

Data0 = 2B (hex)Data1 = C0 (hex)

Setting PB UVP

Parameter: SET_PB_UVP

Sets under voltage protection for UPS battery.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_PB_UVP	High Byte	Low Byte	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_PB_UVP	None	

Round off to the 1st decimal place.

Ex. Setting 11.2V mapping to $11200 (11.2 \times 1000) = 2BC0 (hex)$

Data0 = 2B (hex)

Data1 = C0 (hex)

iBASE

Setting CB Good

Parameter: SET_CB_GOOD

Sets Power Good voltage for car battery.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_CB_GOOD	High Byte	Low Byte	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_CB_GOOD	None	

Round off to the 1st decimal place.

Ex. Setting 11.2V mapping to $11200 (11.2 \times 1000) = 2BC0 (hex)$

Data0 = 2B (hex)Data1 = C0 (hex)

Setting PB Good

Parameter: SET_PB_GOOD

Sets Power Good voltage for UPS battery.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_PB_GOOD	High Byte	Low Byte	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_PB_GOOD	None	

Round off to the 1st decimal place.

Ex. Setting 11.2V mapping to 11200 (11.2 x 1000) = 2BC0 (hex)

Data0 = 2B (hex)

Data1 = C0 (hex)

Getting Current CB & PB Value

Parameter: GET_CURRENT_CB_PB_VOLTAGE

Gets current voltage form car battery and UPS battery.

Request:

Header	Size	Command	CRC
0xFF 0xEE	0x00	GET_CURRENT_CB_PB_VOLTAGE	

Reply

Header	Size	Command	Data0	Data1	Data2	Data3	CRC
0xFF 0xEE	0x04	GET_CURRENT_ CB_PB_VOLTAGE	CB (High Byte)	CB (Ligh Byte)	PB (High Byte)	PB (Ligh Byte)	

Round off to the 1st decimal place.

Ex. Setting 11.2V mapping to 11200 (11.2 x 1000) = 2BC0 (hex)

Data0 = 2B (hex)

Data1 = C0 (hex)

Setting PB 13.2V mapping to 13200 (13.2 x 1000) = 3390 (hex)

Data2 = 33 (hex)

Data3 = 90 (hex)

Setting CHG STV

Parameter: SET_CHG_STV

Sets voltage value for start charging UPS battery.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_CHG_STV	High Byte	Low Byte	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_CHG_STV	None	

Round off to the 1st decimal place.

Ex. Setting 13.2V mapping to $13200 (13.2 \times 1000) = 3390 (hex)$

Data0 = 33 (hex)

Data1 = 90 (hex)

Setting CHG SPV

Parameter: SET_CHG_SPV

Sets voltage value for stop charging UPS battery.

Request:

Header	Size	Command	Data0	Data1	CRC
0xFF 0xEE	0x02	SET_CHG_SPV	High Byte	Low Byte	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_CHG_SPV	None	

Round off to the 1st decimal place.

Ex. Setting 11.2V mapping to 11200 (11.2 x 1000) = 2BC0 (hex)

Data0 = 2B (hex)Data1 = C0 (hex)

Setting THL Offset

Parameter: SET_THL_OFFSET

Sets offset to adjust temperature difference between system and power

board.

Request:

Header	Size	Command	Data	CRC
0xFF	0x01	SET_THL_OFFSET	N	
0xEE			(degree)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_THL_OFFSET	None	

Note: Data range must be $+40\sim$ (-40).

Setting CB Offset

Parameter: SET_CB_OFFSET

Sets offset to adjust CB voltage difference between actual measurement and detected form MCU.

Request:

Header	Size	Command	Data	CRC
0xFF	0x01	SET_CB_OFFSET	N	
0xEE			(V)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_CB_OFFSET	None	

Note: Data range must be +5V~ (-5V).

Setting PB Offset

Parameter: SET_CB_OFFSET

Sets offset to adjust PB voltage difference between actual measurement and detected form MCU.

Request:

Header	Size	Command	Data	CRC
0xFF 0xEE	0x01	SET_PB_OFFSET	N (V)	

Reply

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	SET_PB_OFFSET	None	

Note: Data range must be $+5V \sim (-5V)$.

Getting Status

Gets the current power on delay timer setting, power off delay timer setting, low delay setting value, DC off timer value, temperature protect setting value, voltage protect setting value, Car battery & UPS battery voltage offset setting value, UPS battery charge voltage setting value and current Car battery (CB) & UPS battery(PB) voltage and current temperature of power board.

Request:

Header	Size	Command	Data	CRC
0xFF 0xEE	0x00	GET_STATUS	None	

Reply:

Header	Size	Command	Data	CRC
0xFF 0xEE	0x05	GET_STATUS	Status structure	

Status Structure

Field	Туре	Description
Power on delay timer	Word	Byte0 + Byte1
Power off delay timer	Word	Byte2 + Byte3
DC off delay timer	Word	Byte4 + Byte5
Low delay timer	Word	Byte6 + Byte7
THL delay timer	Word	Byte8 + Byte9
THL Max	Byte	Byte10
THL Low	Byte	Byte11
THL Now	Byte	Byte12
CB uvp	Word	Byte13 + Byte14
PB uvp	Word	Byte15 + Byte16
CB good	Word	Byte17 + Byte18
PB good	Word	Byte19 + Byte20
CHG stv	Word	Byte21 + Byte22
CHG spv	Word	Byte23 + Byte24
CB NOW	Word	Byte25 + Byte26
PB NOW	Word	Byte27 + Byte28
THL offset	Byte	Byte29
CB offset	Byte	Byte30
PB offset	Byte	Byte31