規格書 SPECIFICATION

品名

SWITCHING POWER SUPPLY

STYLE NAME:

型號

P1U-6200P

MODEL NO.:

料號

PART NO.:

版次

A5

REVISION:

APPROVE 核准	当水红烟点的,2005	正,武	Tr 3.35.33
CHECK BY 審核	毛圆星 HAR 8, 2005	資料	MAR 0 9 2005
FORM MAKER 經辦	陳BB QUAR.8.3005	用章	開發部

新巨企業股份有限公司 電源事業處 ZIPPY TECHNOLOGY CORP. POWER DIVISION

2F,NO.50 MIN CHYUAN RD., SHIN-TIEN CITY,TAIPEI HSIEN,

TAIWAN, R.O.C.

TEL.: +886(2)229188512 FAX.: +886(2)229134969

Revisions

Rev.	Page	Item	Date	Description
A2	7	7.1	Mar/19/2001	For production purpose Dielectric withstanding voltage test
A3	4	3.1	JAN/18/2002	Update DC load requirements
A4	7	7.1 7.2	MAY/14/2004	Add operating temperature Add humidity
A5	4 7 7	2.2 8.1	FEB/25/2005	Update frequency Update Safety

MODEL NO. P1U-6200P

- 1.0 Scope
- 2.0 Input requirements
 - 2.1 Voltage
 - 2.2 Frequency
 - 2.3 Stead-state current
 - 2.4 Inrush current
 - 2.5 Power factor correction
- 3.0 Output requirements
 - 3.1 DC load requirements
 - 3.2 Regulation
 - 3.3 Ripple and noise
 - 3.3.1 Specification
 - 3.3.2 Ripple voltage test circuit
 - 3.4 Overshoot
 - 3.5 Efficiency
 - 3.6 Remote on/off control
- 4.0 Protection
 - 4.1 Input
 - 4.2 Output
 - 4.2.1 OPP
 - 4.2.2 OVP
 - 4.2.3 Short current
- 5.0 Power supply sequencing
 - 5.1 Turn on
 - 5.2 Hold up time
 - 5.3 Power off sequence
- 6.0 Signal requirements
 - 6.1 Power good (POR)
 - 6.2 Under voltage sense level
- 7.0 Environment
 - 7.1 Operation
 - 7.2 Humidity
 - 7.3 Insulation resistance
 - 7.4 Dielectric withstanding voltage
 - 7.5 Leakage current

- 8.0 Safety
 - 8.1 UL & UL+C
 - 8.2 TUV
 - 8.3 Power Line Transient
 - 8.4 REF/EMI Standards
- 9.0 Reliability
 - 9.1 Burn in
- 10.0 Mechanical requirements
 - 10.1 Physical dimension
- 11.0 Output power derating characteristics
- 12.0 +3.3V output current and ambient temp curves

1.0 Scope

This specification defines the performance characteristics of a grounded, single-phase, 200 watts, 6 output level power supply. This specification also defines world wide safety requirements and manufactures process test requirements.

2.0 Input requirements

2.1 Voltage (sinusoidal)

Full range

 $100\sim240 \text{ VAC}$ (With $\pm 10\%$ tolerance)

2.2 Frequency

The input frequency range will be 47hz~63hz.

2.3 Steady-state current

 $4 \sim 2$ amps maximum at any low/high range input voltage.

2.4 Inrush current

65/130 amps @110/220 VAC (at 25 degrees ambient cold start)

2.5 Power factor correction

PFC can reach the target of 95% @ 115V, full load, following the standard of IEC 1000-3-2.

3.0 Output requirements

3.1 DC load requirements

Normal	Load current		Regulation tolerance	
Output voltage	Max.	Min	Max.	Min.
+5V	16	2.0	+5%	-5%
+12V	9	1.0	+5%	-5%
-5V	0.2	0.1	+5%	-5%
-12V	0.7	0.1	+10%	-10%
+3.3V	14	1.0	+5%	-5%
+5VSB	1.5	0.1	+5%	-5%

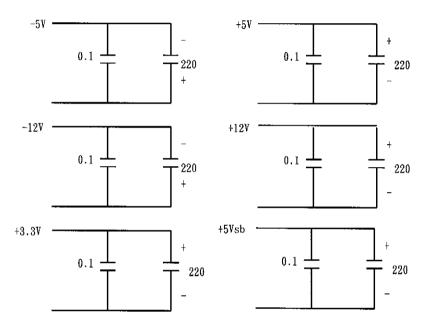
^{*** +5}V and +3.3V total output max : 110W ***

Cross regulation shall include 80% max. Load & 20% max. Load any associate at any output

3.2 Regulation and protection

Output DC voltage	Line regulation	Load regulation	Cross regulation
+5V	$\pm 50 \mathrm{mV}$	$\pm 250 \mathrm{mV}$	$\pm 250 \mathrm{mV}$
+12V	$\pm 100 \mathrm{mV}$	$\pm 600 \mathrm{mV}$	$\pm 600 \mathrm{mV}$
-5V	$\pm 50 \mathrm{mV}$	$\pm 250 \mathrm{mV}$	$\pm 250 \mathrm{mV}$
-12V	$\pm 120 \mathrm{mV}$	$\pm 1200 \mathrm{mV}$	$\pm 1200 \mathrm{mV}$
+3.3V	$\pm 50 \mathrm{mV}$	$\pm 165 \mathrm{mV}$	$\pm 165 \mathrm{mV}$
+5VSB	$\pm 50 \mathrm{mV}$	$\pm 250 \mathrm{mV}$	$\pm 250 \mathrm{mV}$

^{*** +5}V,+3.3V and +12V total output max : 185W ***


^{*** +3.3}V Current Derating Linearly to 10A at 40°C

3.3 Ripple and noise

3.3.1 Specification

+5V	50mV (P-P) / N=70mV
+12V	120mV (P-P)/ N=120mV
-5V	100mV (P-P)/ N=100mV
-12V	120mV (P-P)/ N=120mV
+3.3V	60 mV (P-P) / N = 70 mV
+5VSB	60mV (P-P) / N=70mV

3.3.2 Ripple voltage test circuit

0.1 uf is ceramic, the other is tantalum. Noise bandwidth is from DC to 20Mhz

3.4 Overshoot

Any overshoot at turn on or turn off shall be less than 15% of the nominal voltage value, all output shall be within the regulation limit of section 3.2 before issuing the power good signal of section 6.0.

3.5 Efficiency

Power supply efficiency typical 65% at 115V, full load.

3.6 Remote on/off control

The power supply DC outputs (with the exception of +5VSB) shall be enabled with an active-low, TTL-compatible signal("PS-ON") When PS-ON is pulled to TTL low, the DC outputs are to be enabled. When PS-ON is pulled to TTL high or open circuited, the DC outputs are to be disabled.

The DC output enable circuit shall be SELV compliant.

4.0 Protection

4.1 Input (primary)

The input power line must have an over power protection device in accordance with safety requirement of section 8.0

4.2 Output (secondary)

4.2.1 Over power protection

Over power protection at $110\%\sim160\%$ of rated output power .The power supply latches all DC output into a shutdown state. Over power of this type shall cause no damage to power supply \cdot after over power is removed and a power on/off cycle is initiated \cdot the power supply will restart.

4.2.2 Over voltage protection

If an over voltage fault occurs (internal of the power supply), the power supply will latch all DC output into a shutdown state before

+5V : 5.6V \sim 6.6V +3.3V : 3.6V \sim 4.2V +12V : 13.2V \sim 14.6V

4.2.3 Short circuit

- A: A short circuit placed on any DC output to DC return shall cause no damage.
- B: The power supply shall be latched in case any short circuit is taken place at +5V, +3.3V, +12V output.
- C: The power supply shall be auto-recovered in case any short circuit is taken place at -5V, -12V, +5Vsb

5.0 Power supply sequencing

5.1 Power on (see fig.1)

5.2 Hold up time

When power shutdown DC output 5V must be maintain 16msec in regulation limit at normal input voltage.

5.3 Power off sequence (see fig. 1)

6.0 Signal requirements

6.1 Power good signal (see fig. 1)

The power supply shall provide a "power good" signal to reset system logic, indicate proper operation of the power supply, and give advance warning of impending loss of regulation at turn off. This signal shall be a TTL compatible up level (2.4V to 5.25V) when +5V output voltage are present and above the minimum UV sense levels specified in paragraph 6.2, or a down level (0.0V to 0.8V) when any output is below its minimum UV sense level.

At power on , the power good signal shall have a turn on delay of at least 100ms but not greater than 500ms after the output voltages have reached their respective minimum sense levels.

6.2 Under voltage (UV) sense levels

Output	Minimum sense voltage
+5V	+4.50V
+3.3V	+2.50V

7.0 Environment

7.1 Temperature

Operating temperature 0 to 40 degrees centigrade 5torage temperature -20 to 80 degrees centigrade

Safety regulation temperature Applied at room temperature (25°C)

Operating temperature from 0°C should start from AC 100V

7.2 Humidity

Operating humidity 20% to 80% Non-operating humidity 10% to 90%

7.3 Insulation resistance

Primary to secondary : 50 meg. ohm min. 500 VDC Primary to FG : 50 meg. ohm min. 500 VDC

7.4 Dielectric withstanding voltage

Condition for approval:

Primary to secondary :3K VAC for 1min. Primary to FG :1800 VAC for 1 min.

For production purpose:100% test

Primary to FG :1800 VAC for 2 sec OR 2650 VDC for 2 sec.

7.5 Leakage current

3.5 mA. max. at nominal voltage 250 VAC

8.0 Safety

- 8.1 Recognized to U.S. and Canadian requirements under the component recognition program of Underwriters Laboratories Inc.
 The power supply shall be designed to meet UL60950.
- 8.2 TUV Standards

The power supply shall be designed to meet TUV EN-60950.

8.3 Power Line Transient

The power supply shall be designed to meet the following standards

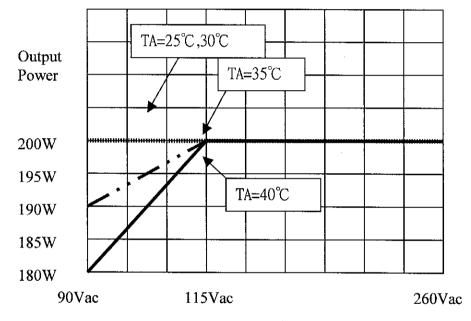
- a). EN 61000-4-2(ESD) Criterion B, ± 4 KV by contact, ± 8 KV by air.
- b). EN 61000-4-4(EFT) Criterion B, ± 1 KV.
- c). EN 61000-4-5(SURGE) Criterion B, Line-Line ± 1 KV, Line-Earth ± 2 KV.

8.4 RFI / EMI Standards

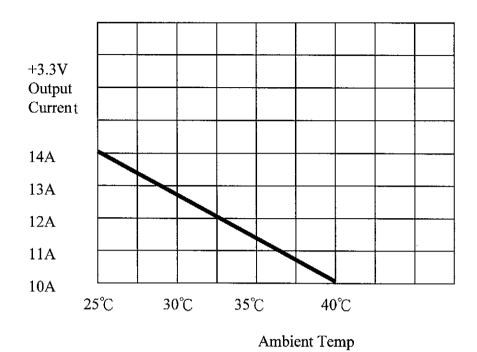
The power supply shall comply with the following radiated and conducted Emissions standards,

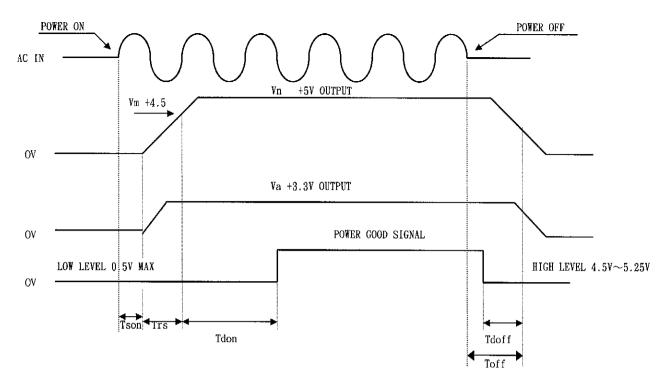
- a). FCC part 15.
- b). CISPR 22 (EN 55022).

9.0 Reliability


9.1 Burn in

All products shipped to customer must be processed by burn-in. The burn- in shall be performed for 1 hour at full load.


10.0 Mechanical requirements


10.1 Physical dimension : 40 mm * 100 mm * 190 mm (H*W*D)

11.0 Output power derating characteristics

Input Voltage

Vn Nominal voltages +5V

Vm Minimum voltages +4.5V

Va Nominal voltages +3.3V

Tson Switch on time(500ms. Max)

Trs +5V rise time (100ms. max.)

Tdon Delay turn-on (100ms. < Tdon < 500ms.)

Tdoff Delay turn-off (1 ms. min.)

Toff Hold up time (16ms. min.)