# 規格書 SPECIFICATION

| 品名<br>STYLE NAME: | SWITCHING POWER SUPPLY |
|-------------------|------------------------|
| 型號<br>MODEL NO. : | V2H-5400V              |
| 料號<br>PART NO. :  |                        |
| 版次<br>REVISION:   | A4                     |

| APPROVE<br>核准  |                                       | E                    |
|----------------|---------------------------------------|----------------------|
| CHECK BY<br>審核 | 張恒嘉 NOV 7. 2008 ]                     | 查 上式資料 NOV 0.7. 2008 |
| FORM<br>MAKER  | 7                                     | 開發部                  |
| 經辦             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 章                    |

新巨企業股份有限公司 電源事業處 ZIPPY TECHNOLOGY CORP. POWER DIVISION

10F,NO.50 MIN CHYUAN RD., SHIN-TIEN CITY, TAIPEI HSIEN, TAIWAN, R.O.C.

TEL.: +886(2)29188512 FAX.: +886(2)29134969

# Revision

| Rev. | Page | Item | Date        | Description                            |
|------|------|------|-------------|----------------------------------------|
| A2   | ALL  |      | JAN-31-2007 | Update model no. V2H-5400P → V2H-5400V |
| A3   | 10   | 11.0 | JUN-15-2007 | Add a -12V Io derating curve           |
| A4   | 10   | 11.0 | N0V-05-2008 | Update –12V Io derating curve          |

# MODEL NO. V2H-5400V

- 1.0 Scope
- 2.0 Input requirements
  - 2.1 Voltage
  - 2.2 Frequency
  - 2.3 Stead-state current
  - 2.4 Inrush current
  - 2.5 Power factor correction
- 3.0 Output requirements
  - 3.1 DC load requirements
  - 3.2 Regulation and protection
  - 3.3 Ripple and noise
    - 3.3.1 Specification
    - 3.3.2 Ripple voltage test circuit
  - 3.4 Overshoot
  - 3.5 Efficiency
- 4.0 Protection
  - 4.1 Input
  - 4.2 Output
    - 4.2.1 OPP
    - 4.2.2 OVP
    - 4.2.3 Short
- 5.0 Power supply sequencing
  - 5.1 Turn on
  - 5.2 Hold up time
  - 5.3 Power off sequence
- 6.0 Signal requirements
  - 6.1 Power good (POK)
- 7.0 Environment
  - 7.1 Temperature
  - 7.2 Humidity
  - 7.3 Insulation resistance
  - 7.4 Dielectric withstanding voltage
  - 7.5 Leakage current
- 8.0 Safety
  - 8.1 UL
  - 8.2 CUL
  - 8.3 TUV
  - 8.4 CCC

- 9.0 Reliability 9.1 Burn in
- 10.0 Mechanical requirements 10.1 Physical dimension
- 11.0 -12V Io derating curve

#### 1.0 Scope

This specification defines the performance characteristics of a grounded, AC input,400 watts , 5 output level power supply. This specification also defines world wide safety requirements and manufactures process test requirements.

#### 2.0 Input requirements

2.1 Voltage (sinusoidal): 100~240 VAC full range (With ±10% tolerance).

#### 2.2 Frequency

The input frequency range will be 47hz~63hz.

#### 2.3 Steady-state current

7A/3A at any low/high range input voltage.

# 2.4 Inrush current

15/30Amps @ 115/230 VAC (at 25 degrees ambient cold start)

#### 2.5 Power factor correction

The power supply shall incorporate universal power input with active power factor correction, which shall reduce line harmonics in accordance with the IEC61000-3-2 standards.

PFC can reach the target of 95% @115/230VAC,Full load.

# 3.0 Output requirements

#### 3.1 DC load requirements

| Normal         | Load | current(A) | Regulation | n tolerance |
|----------------|------|------------|------------|-------------|
| Output voltage | Min. | Max.       | Max.       | Min.        |
| +5V            | 0.5A | 20A        | +5%        | -5%         |
| +12V           | 0.5A | 30A        | +5%        | -5%         |
| -12V           | 0.1A | 0.7A       | +13%       | -7%         |
| +3.3V          | 0.5A | 20A        | +5%        | -5%         |
| +5Vsb          | 0.1A | 2A         | +5%        | -5%         |

<sup>\* +5</sup>V and +3.3V total output max : 130W \*\*\*

When doing the cross regulation of -12 V test(one output channel at high load and the other output channels at low load), it is requested to set the higher output channel at 80% max. of its spec., and the lower output channels at 20% max. of theirs.

#### 3.2 Regulation

| Output DC | Line       |
|-----------|------------|
| voltage   | regulation |
| +5V       | ±50mV      |
| +12V      | ±120mV     |
| -12V      | ±120mV     |
| +3.3V     | ±50mV      |
| +5Vsb     | ±50mV      |

<sup>\*\* +5</sup>V,+3.3V and +12v total max:390W \*\*\*

<sup>\*\*\*</sup> Total power:400W

# 3.3 Ripple and noise

#### 3.3.1 Specification

| +5V   | 50mV (P-P)  |
|-------|-------------|
| +12V  | 120mV (P-P) |
| -12V  | 120mV (P-P) |
| +3.3V | 50mV (P-P)  |
| +5Vsb | 50mV (P-P)  |

# 3.3.2 Ripple voltage test circuit



0.1uf is ceramic the other is tantalum. Noise bandwidth is from DC to 20MHz

# 3.4 Overshoot

Any overshoot at turn on or turn off shall be less 10% of the nominal voltage value, all output shall be within the regulation limit of section 3.2 before issuing the power good signal of section 6.0.

# 3.5 Efficiency

Power supply efficiency typical 80-84% at 110V FULL LOAD

3.6 Typical Distribution of Efficiency

|                  | I      | .OAD(20% | 6)     |        |        |
|------------------|--------|----------|--------|--------|--------|
| Output           | +5V    | +3.3V    | +12V   | -12V   | 5VSB   |
| Load Current     | 2.92A  | 2.92A    | 4.38A  | 0.146A | 0.292A |
| Voltage(Rms)     | 5.16V  | 12.06V   | 3.364V | 12.10V | 5.07V  |
| P in(AC in 110V) | 98.5W  |          |        |        |        |
| EFF.             | 82.18% |          |        |        |        |

| LOAD(50%)        |        |        |        |         |       |
|------------------|--------|--------|--------|---------|-------|
| Output           | +5V    | +3.3V  | +12V   | -12V    | 5VSB  |
| Load Current     | 7.3A   | 7.3A   | 10.95A | 0.365A  | 0.73A |
| Voltage(Rms)     | 5.14V  | 3.333V | 12.03V | -12.21V | 5.05V |
| P in(AC in 110V) | 239.7W |        |        |         |       |
| EFF.             | 84.15% |        |        |         |       |

|                  | L              | OAD(80% | 6)     |         |        |
|------------------|----------------|---------|--------|---------|--------|
| Output           | +5V            | +3.3V   | +12V   | -12V    | 5VSB   |
| Load Current     | 11.68 <b>A</b> | 11.68A  | 17.52A | 0.584A  | 1.168A |
| Voltage(Rms)     | 5.12V          | 12V     | 3.295V | -12.41V | 5.04V  |
| P in(AC in 110V) | 391W           |         |        |         |        |
| EFF.             | 82.26%         |         |        |         |        |

| FULL LOAD(100%)  |         |        |        |         |       |
|------------------|---------|--------|--------|---------|-------|
| Output           | +5V     | +3.3V  | +12V   | -12V    | 5VSB  |
| Load Current     | 14.6A   | 14.6A  | 21.9A  | 0.7A    | 1.46A |
| Voltage(Rms)     | 5.11V   | 3.276V | 11.92V | -12.54V | 5.03V |
| P in(AC in 110V) | 497.64W |        |        |         |       |
| EFF.             | 80.3%   |        |        |         |       |



P.S Any difference either on the DC output cable (i.e., length, wire gauge) or on the accurate of instruments will conclude different test result.

#### 4.0 Protection

# 4.1 Input (primary)

The input power line must have an over power protection device in accordance with safety requirement of section 8.0

# 4.2 Output (secondary)

#### 4.2.1 Over power protection

The power supply shall provide over power protection on the power supply latches all DC output into a shutdown state. Over power of this type shall cause no damage to power supply 'after over load is removed and a power on/off cycle is initiated 'the power supply will restart.

Trip point total power min. 110%, max. 160%.

#### 4.2.2 Over voltage protection

If an over voltage fault occurs, the power supply will latch all DC output into a shutdown state.

|       | Min   | Typical | Max   |
|-------|-------|---------|-------|
| +3.3V | 3.6V  | 4.1V    | 4.3V  |
| +5V   | 5.6V  | 6.1V    | 6.5V  |
| +12V  | 13.2V | 14.3V   | 15.0V |

#### 4.2.3 Short circuit

- A: A short circuit placed on any DC output to DC return shall cause no damage.
- B: The power supply shall be latched in case any short circuit is taken place at +5V,+3.3V,+12V,-12Voutput.
- C: The power supply shall be auto-recovered in case any short circuit is taken place at +5VSB.

# 5.0 Power supply sequencing

# 5.1 Power on (see fig.1)

# 5.2 Hold up time

When AC source shutdown DC output must be maintain 16msec in regulation limit at. normal input voltage (AC115V)

#### 5.3 Power off sequence (see fig. 1)

#### 6.0 Signal requirements

#### 6.1 Power good signal (see fig. 1)

The power supply shall provide a "power good" signal to reset system logic, indicate proper operation of the power supply.

At power on , the power good signal shall have a turn on delay of at least 100ms but not greater than 550ms after the output voltages have reached their respective minimum sense levels.

#### 7.0 Environment

#### 7.1 Temperature

Operating temperature:

0 to 50 degrees centigrade(90~264 VAC)

Non-Operating temperature: -20 to 80 degrees centigrade

7.2 Humidity

Operating humidity

20% to 80%

Non-operating humidity

10% to 90%

7.3 Insulation resistance

Primary to secondary

: 100 meg. Ohm min. 500 VDC

Primary to FG

: 100 meg. Ohm min. 500VDC

7.4 Dielectric withstanding voltage

Primary to secondary

: 3K VAC for 60 Second.

Primary to FG

: 1500 VAC for 60 Second.

7.5 Leakage current

3.5 mA max. at nominal voltage VAC

#### 8.0 Safety

8.1 Underwriters laboratory (UL).

The power supply designed to meet UL 60950.

8.2 Canadian standards association (CUL)

The power supply designed to meet CSA 1402C & CSA 950.

8.3 TUV

The power supply shall be designed to meet TUV EN-60950.

8.4 CCC Standards

The power supply shall be designed to meet GB4943-1995, GB9254-1998, GB17625.1-1998.

#### 9.0 Reliability

9.1 Burn in

All products shipped to customer must be processed by burn-in. The burn- in shall be performed for 1 hour at full load.

10.0 Mechanical requirements

10.1 Physical dimension : 215mm(D) \* 100mm(W) \*70 mm(H)

# 11.0 -12V Io derating curve





Vn Nominal voltages +5V Vm Minimum voltages +4.5V

Va Nominal voltages +3.3V

Vb +2.0V max

Tson Switch on time (1500 ms. max.)

Trs +5V rise time (50ms. max.)

Tdon Delay turn-on (100ms. < Tdon < 550ms.)

Tdoff Delay turn-off (1 ms. min.) at 115V

Toff Hold up time:

 $16\mathrm{mS}$  MINIMUM AT 115V FULL LOAD &  $20\mathrm{mS}$ 

MINIMUM AT 230V FULL LOAD

《Figure 1》