規格書 SPECIFICATION 品名 **STYLE** SWITCHING POWER SUPPLY NAME: 型號 MODEL P2H-6400P (ROHS) NO.: 料號 PART NO.: 版次 **A**1 **REVISION:** | APPROVE
核准 | 黄水风机20,2006 | 正式 | 12.35-334 | |---------------------|-------------|----|---------------| | CHECK BY
審核 | 草成雅 | 資 | JUL 2 1, 2006 | | FORM
MAKER
經辦 | 课品了机2006 | 用 | 開發那 | 新巨企業股份有限公司 電源事業處 ZIPPY TECHNOLOGY CORP. POWER DIVISION 2F,NO.50 MIN CHYUAN RD., SHIN-TIEN CITY,TAIPEI HSIEN, TAIWAN,R.O.C. TEL.: +886(2)29188512 FAX.: +886(2)29134969 ### Revision | | I | | | | |------|------|-------|------|---------------| | Th. | Daga | T4 | | . | | Rev. | rage | 1 Hem | Date | Description 1 | | | | | | - r | ### MODEL NO. P2H-6400P (ROHS) - 1.0 Scope - 2.0 Input requirements - 2.1 Voltage - 2.2 Frequency - 2.3 Steady-state current - 2.4 Inrush current - 2.5 Power factor correction - 3.0 Output requirements - 3.1 DC load requirements - 3.2 Regulation - 3.3 Ripple and noise - 3.3.1 Specification - 3.3.2 Ripple voltage test circuit - 3.4 Overshoot - 3.5 Efficiency - 3.6 Remote on/off control - 4.0 Protection - 4.1 Input - 4.2 Output - 4.2.1 OPP - 4.2.2 OVP - 4.2.3 Short current - 5.0 Power supply sequencing - 5.1 Turn on - 5.2 Hold up time - 5.3 On/Off cycle - 5.4 Power off sequence - 5.4.1 Output voltage sequence - 6.0 Signal requirements - 6.1 Power good signal - 6.2 Under voltage sense level - 7.0 Environment - 7.1 Temperature - 7.2 Humidity - 7.3 Insulation resistance - 7.4 Dielectric withstanding voltage - 7.5 Leakage current - 8.0 Safety - 8.1 UL & UL+C - 8.2 TUV - 8.3 CB - 9.0 Reliability - 9.1 Burn in - 10.0 Mechanical requirements - 11.0 DC output cable drawing #### 1.0 Scope This specification defines the performance characteristics of a grounded, single-phase, 400 watts, 6 output level power supply. This specification also defines world wide safety requirements and manufactures process test requirements. #### 2.0 Input requirements 2.1 Voltage (sinusoidal) Full range $100\sim240 \text{ VAC}$ (With $\pm 10\%$ tolerance) 2.2 Frequency The input frequency range will be 50Hz/60Hz (±3Hz). 2.3 Steady-state current 8 - 5 amps maximum at any low/high range input voltage. 2.4 Inrush current 60/80 amps @110/220 VAC (at 25 degrees ambient cold start) 2.5 Power factor correction PFC can reach the target of 95% @110V, full load, following the standard of EN 61000-3-2, class D. #### 3.0 Output requirements #### 3.1 DC load requirements | Normal | Load current | | Regulation tolerance | | |----------------|--------------|------|----------------------|--------| | Output voltage | Max. | Min | Max. | Min. | | +5V | 25A | 3.0A | 5.25V | 4.75V | | -5V | 0.5A | 0.0A | -5.5V | -4.5V | | +12V | 28A | 2.0A | 12.72V | 11.28V | | -12 V | 0.5A | 0.0A | -13.2V | -10.8V | | +3.3V | 20A | 1.0A | 3.46V | 3.14V | | +5VSB | 2 A | 0.1A | 5.25V | 4.75V | ^{*** +5}V and +3.3V total output max:175W *** When doing the cross regulation test (one output channel at high load and the other output channels at low load), it is requested to set the higher output channel at 80% max. of its spec., and the lower output channels at 20% max. of theirs. #### 3.2 Regulation | Output DC | Line | |-----------|----------------------| | voltage | regulation | | +5V | ±50mV | | -5V | ±50mV | | +12V | ±50mV | | -12V | $\pm 50 \mathrm{mV}$ | | +3.3V | $\pm 50 \mathrm{mV}$ | | +5VSB | ±50mV | ^{*** +5}V , +12V and +3.3V total output max:384W *** #### 3.3 Ripple and noise #### 3.3.1 Specification | Norminal | Ripple | Ripple+Noise | |----------|-------------------|------------------| | +5V | 50mV | $80 \mathrm{mV}$ | | -5V | $100 \mathrm{mV}$ | 150mV | | +12V | $80 \mathrm{mV}$ | 120mV | | -12V | $100 \mathrm{mV}$ | 150mV | | +3.3V | 50mV | 80mV | | +5VSB | 50mV | $80 \mathrm{mV}$ | #### 3.3.2 Ripple voltage test circuit 0.1 uf is ceramic, the other is tantalum. Noise bandwidth is from DC to 20Mhz #### 3.4 Overshoot Any overshoot at turn on or turn off shall be less than 15% of the nominal voltage value, all output shall be within the regulation limit of section 3.1 before issuing the power good signal of section 6.0. #### 3.5 Efficiency Power supply efficiency typical 65% at 115V, full load. #### 3.6 Remote on/off control The power supply DC outputs (with the exception of +5VSB) shall be enabled with an active-low, TTL-compatible signal (" PS-ON ") When PS-ON is pulled to TTL low, the DC outputs are to be enabled. When PS-ON is pulled to TTL high or open circuited, the DC outputs are to be disabled. #### 4.0 Protection #### 4.1 Input (primary) The input power line must have an over power protection device in accordance with safety requirement of section 8.0 #### 4.2 Output (secondary) #### 4.2.1 Over power protection Over power protection at 110%~160% of rated output power .The power supply latches all DC output into a shutdown state. Over power of this type shall cause no damage to power supply, after over power is removed and a power on/off cycle is initiated, the power supply will restart. #### 4.2.2 Over voltage protection If an over voltage fault occurs (internal of the power supply), the power supply will latch all DC output into a shutdown state before +5V : 5.7V \sim 6.5V +3.3V : 3.7V \sim 4.1V +12V : 13.2V \sim 14.5V #### 4.2.3 Short circuit - A: A short circuit placed on any DC output to DC return shall cause no damage. - B: The power supply shall be latched in case any short circuit is taken place at +5V, +3.3V, +12V output. - C: The power supply shall be auto-recovered in case any short circuit is taken place at -5V, -12V, +5VSB. #### 5.0 Power supply sequencing - 5.1 Power on (see fig.1) - 5.2 Hold up time When power shutdown DC output 5V must be maintain 16msec in regulation limit at normal input voltage. 5.3 Power off sequence (see fig. 1) #### 6.0 Signal requirements #### 6.1 Power good signal (see fig. 1) The power supply shall provide a "power good" signal to reset system logic, indicate proper operation of the power supply, and give advance warning of impending loss of regulation at turn off. This signal shall be a TTL compatible up level (2.4V to 5.25V) when +5V output voltage are present and above the minimum UV sense levels specified in paragraph 6.2, or a down level (0.0V to 0.8V) when any output is below its minimum UV sense level. At power on, the power good signal shall have a turn on delay of at least 100ms but not greater than 500ms after the output voltages have reached their respective minimum sense levels. #### 6.2 Under voltage (UV) sense levels Output Minimum sense voltage +5V +4.50V +3.3V +2.50V #### 7.0 Environment 7.1 Temperature Operating temperature 0 to 40 degrees centigrade (90-240 VAC) 50 degrees centigrade (100-264 VAC) Non-Operating temperature -20 to 80 degrees centigrade Safety regulation temperature Applied at room temperature $(25^{\circ}C)$ Operating temperature from 0°C should start from AC 100V 7.2 Humidity Operating humidity Non-operating humidity 20% to 80% 10% to 90% 7.3 Insulation resistance Primary to secondary Primary to Frame Gnd : 30 meg. ohm min. 500 VDC : 30 meg. ohm min, 500 VDC 7.4 Dielectric withstanding voltage For approval purpose: Primary to secondary Primary to Frame Gnd : 3KVAC for 1min. : 1500 VAC for 1 min. For production purpose: 100% test Primary to Frame Gnd : 1500VAC for 1 sec Cut off current 15mA 7.5 Leakage current 3.5 mA. max. at nominal voltage 250 VAC #### 8.0 Safety 8.1 Recognized to U.S. and Canadian requirements under the component recognition program of Underwriters Laboratories Inc. The power supply shall be designed to meet UL 60950. 8.2 TUV Standards The power supply shall be designed to meet TUV EN-60950. 8.3 CB The power supply shall be designed to meet IEC 60950. #### 9.0 Reliability 9.1 Burn in All products shipped to customer must be processed by burn-in. The burn- in shall be performed for 1 hour at full load. #### 10.0 Mechanical requirements Physical dimension: 70 mm * 100 mm * 215 mm (H*W*D) ## 11.0 DC output cable drawing (see attached drawing) Vn Nominal voltages +5V Vm Minimum voltages +4.5V Va Nominal voltages +3.3V Tson Switch on time (500ms. Max) Trs +5V rise time (100ms. max.) Tdon Delay turn-on (100ms. < Tdon < 500ms.) Tdoff Delay turn-off (1 ms. min.) Toff Hold up time (16ms. min.) Tm Delay time of +3.3V (1ms. min) 《Figure 1》