規格書 SPECIFICATION 品名 SWITCHING POWER SUPPLY STYLE NAME: 型號 BHG2-5400V MODEL NO.: 料號 PART NO.: 版次 A3 REVISION: | APPROVE
核准 | \$3ct 24AR.19,2011 | 正式 | | |------------------|-----------------------|----|--| | CHECK BY
審核 | 王建等MAR.17.2011 | 資料 | MAR THE SOLL | | FORM MAKER
經辦 | * * * * * MAR-17->01) | 用章 | And the second s | 新巨企業股份有限公司 電源事業處 ZIPPY TECHNOLOGY CORP. POWER DIVISION 10F,NO.50 MIN CHYUAN RD., SHIN-TIEN CITY,TAIPEI HSIEN, TAIWAN,R.O.C. TEL.: +886(2)29188512 FAX.: +886(2)29134969 # Revision | Rev. | Page | Item | Date | Description | |------|------|------|-------------|-----------------------------| | A2 | 5 | 2.2 | JAN-05-2011 | Update Steady-state current | | A2 | 7 | 5.2 | JAN-05-2011 | Update Hold up time | | A3 | 5 | 2.2 | MAR-17-2011 | Update Steady-state current | | | | | | | # MODEL NO. BHG2-5400V - 1.0 Scope - 2.0 Input requirements - 2.1 Voltage - 2.2 Steady-state current - 2.3 Inrush current - 3.0 Output requirements - 3.1 DC load requirements - 3.2 Regulation - 3.3 Ripple and noise - 3.3.1 Specification - 3.3.2 Ripple voltage test circuit - 3.4 Overshoot - 3.5 Efficiency - 4.0 Protection - 4.1 Input - 4.2 Output - 4.2.1 OPP - 4.2.2 OVP - 4.2.3 Short current - 4.2.4 OCP - 5.0 Power supply sequencing - 5.1 Turn on - 5.2 Hold up time - 5.3 Power off sequence - 6.0 Signal requirements - 6.1 Power good signal - 7.0 Environment - 7.1 Temperature - 7.2 Humidity - 7.3 Insulation resistance - 7.4 Dielectric withstanding voltage - 8.0 Safety - 8.1 UL - 8.2 TUV - 8.3 CB - 9.0 Reliability - 9.1 Burn in - 10.0 Mechanical requirements - 11.0 DC output cable drawing #### 1.0 Scope This specification defines the performance characteristics of a grounded 400 watts, 5 output level power supply. This specification also defines world wide safety requirements and manufactures process test requirements. #### 2.0 Input requirements 2.1 Voltage Range $18 \sim 36 \text{ VDC}$ Nomal 24VDC #### 2.2 Steady-state current $20 \sim 36 \text{ VDC} / 29 \sim 15 \text{ amp (22 amp at } 24 \text{VDC)}$ 2.3 Inrush current 60 amps @ 24VDC (at 25 degrees ambient cold start) # 3.0 Output requirements ## 3.1 DC load requirements | Normal | Load current | | Regulation tolerance | | | |----------------|--------------|-----|----------------------|------|--| | Output voltage | Max. | Min | Max. | Min. | | | +5V | 25.0 | 1 | +5% | -5% | | | +12V | 33.0 | 2.0 | +5% | -5% | | | -12V | 0.8 | 0.0 | +10% | -10% | | | +3.3V | 25.0 | 0.5 | +5% | -5% | | | +5VSB | 3.5 | 0.1 | +5% | -5% | | ^{*** +5}V and +3.3V total output max : 35A *** When doing the cross regulation test(one output channel at high load and the other output channels at low load), it is requested to set the higher output channel at 80% max. of its spec., and the lower output channels at 20% max. of theirs. #### 3.2 Regulation | Output DC | Line | |-----------|------------| | voltage | regulation | | +5V | ±50mV | | +12V | ±120mV | | -12V | ±120mV | | +3.3V | ±50mV | | +5VSB | ±50mV | ^{***} Total output max: 400W *** # 3.3 Ripple and noise #### 3.3.1 Specification | +5V | 50mV (P-P) | |-------|-------------| | +12V | 120mV (P-P) | | -12V | 120mV (P-P) | | +3.3V | 50mV (P-P) | | +5VSB | 50mV (P-P) | #### 3.3.2 Ripple voltage test circuit 0.1uf is ceramic, the other is electrolytic capacitor. Noise bandwidth is from DC to 20Mhz #### 3.4 Overshoot Any overshoot at turn on or turn off shall be less than 10% of the nominal voltage value, all output shall be within the regulation limit of section 3.1 before issuing the power good signal of section 6.0. #### 3.5 Efficiency Power supply efficiency >80% at 24V, full load. #### 4.0 Protection #### 4.1 Input (primary) The input power line must have an over power protection device in accordance with safety requirement of section 8.0 # 4.2 Output (secondary) #### 4.2.1 Over power protection (one unit) The power supply shall provide over power protection on the power supply latches all DC output into a shutdown state. Over power of this type shall cause no damage to power supply, after over load is removed and a power on/off cycle is initiated, the power supply will restart. Trip point total power min. 110%, max. 150%. ### 4.2.2 Over voltage protection If an over voltage fault occurs, the power supply will latch all DC output into a shutdown state before +5V : $5.6V \sim 6.5V$ +3.3V : $3.6V \sim 4.3V$ +12V : $13.2V \sim 15 V$ #### 4.2.3 Short circuit - A: A short circuit placed on any DC output to DC return shall cause no damage. - B: The power supply shall be latched in case any short circuit is taken place at +5V,+3.3V,+12V,-12V output. - C: The power supply shall be auto-recovered in case any short circuit is taken place at +5VSB. # 4.2.4 Over current protection If an over current fault occurs, the power supply will latch all DC output into a shutdown state. | | Min | Typical | Max | |-------|-----|---------|-------| | +3.3V | 28A | 32.5A | 40A | | +5V | 28A | 32.5A | 40A | | +12V | 36A | 43A | 49.5A | #### 5.0 Power supply sequencing 5.1 Power on (see fig.1) # 5.2 Hold up time When power shutdown DC output 12V must be maintain 1mS in regulation limit at normal input voltage. 5.3 Power off sequence (see fig. 1) #### 6.0 Signal requirements 6.1 Power good signal (see fig. 1) The power supply shall provide a "power good" signal to reset system logic, indicate proper operation of the power supply. At power on , the power good signal shall have a turn on delay of at least 100ms but not greater than 500ms after the output voltages have reached their respective minimum sense levels. #### 7.0 Environment 7.1 Temperature Operating temperature Non-Operating temperature 0 to 40 degrees centigrade -20 to 80 degrees centigrade Operating temperature from 0°C should start from DC 24V 7.2 Humidity Operating humidity 20% to 80% Non-operating humidity 10% to 90% 7.3 Insulation resistance Primary to secondary : 20 meg. ohm min. 500 VDC Primary to Frame Gnd : 20 meg. ohm min. 500 VDC 7.4 Dielectric withstanding voltage For approval purpose: Primary to secondary : 1.5K VAC for 1 sec. Primary to Frame Gnd : 1.5K VAC for 1 sec. #### 8.0 Safety 8.1 Underwriters laboratory (UL). The power supply designed to meet UL 60950. 8.2 TUV Standards The power supply shall be designed to meet TUV EN-60950. 8.3 CB The power supply shall be designed to meet CB IEC 60950. #### 9.0 Reliability 9.1 Burn in All products shipped to customer must be processed by burn-in. The burn- in shall be performed at full load. # 10.0 Mechanical requirements Physical dimension: 140 mm * 150 mm * 86 mm (D*W*H) # 11.0 DC output cable drawing (see attached drawing) | Item | Description | MIN | MAX | UNITS | |----------------|--|-----|------|-------| | Tsb_on_delay | Delay from DC being applied to 5VSB being within regulation. | | 2500 | ms | | Tdc_on_delay | Delay from DC being applied to all output voltages being within regulation. | | 4000 | ms | | Tvout_holdup | Time all output voltages stay within regulation after loss of DC. | 1.6 | | ms | | Tpwok_holdup | Delay from loss of DC to deassertion of PWOK. | 0.6 | | ms | | Tpson_on_delay | Delay from PSON# active to output voltages within regulation limits. | 5 | 400 | ms | | Tpson_pwok | Delay from PSON# deactive to PWOK being deasserted. | | 50 | ms | | Tpwok_on | Delay from output voltages within regulation limits to PWOK asserted at turn on. | 100 | 500 | ms | | Tpwok_off | Delay from PWOK deasserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits. | 1 | | ms | | Tsb_vout | Delay from 5VSB being in regulation to O/Ps being in regulation at DC turn on. | 5 | 1000 | ms | | Tsb_holdup | Time 5VSB output voltage stays within regulation after loss of DC. | 2 | | ms | | I'vout_rise | Output voltage rise time from each main output. | 5 | 20 | ms | 《Figure 1》